
172 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

Support Vector Machine Training for Improved
Hidden Markov Modeling
Alba Sloin and David Burshtein, Senior Member, IEEE

Abstract—We present a discriminative training algorithm, that
uses support vector machines (SVMs), to improve the classifica-
tion of discrete and continuous output probability hidden Markov
models (HMMs). The algorithm uses a set of maximum-likelihood
(ML) trained HMM models as a baseline system, and an SVM
training scheme to rescore the results of the baseline HMMs. It
turns out that the rescoring model can be represented as an un-
normalized HMM. We describe two algorithms for training the
unnormalized HMM models for both the discrete and continuous
cases. One of the algorithms results in a single set of unnormal-
ized HMMs that can be used in the standard recognition procedure
(the Viterbi recognizer), as if they were plain HMMs. We use a toy
problem and an isolated noisy digit recognition task to compare
our new method to standard ML training. Our experiments show
that SVM rescoring of hidden Markov models typically reduces the
error rate significantly compared to standard ML training.

Index Terms—Discriminative training, hidden Markov model
(HMM), speech recognition, support vector machine (SVM).

I. INTRODUCTION

THE HIDDEN Markov model (HMM) plays an important
role in a variety of applications, including speech modeling

and recognition and protein sequence analysis. Typically one as-
signs an HMM to each class, and estimates its parameters from
some training database using the maximum likelihood (ML) ap-
proach. The recognition of an observed sequence that repre-
sents some unknown class can then proceed using the estimated
HMM parameters. Although the ML approach is asymptotically
unbiased and achieves the Cramer-Rao lower bound, it is not
necessarily the optimal approach in terms of minimum classi-
fication error. If the assumed model is incorrect or the training
set is not large enough, the optimal properties of ML training
do not hold. In such cases, it is possible to benefit, in terms
of lower error rates, from discriminative training methods, that
consider all the training examples in the training set and train all
the models simultaneously.

Manuscript received September 3, 2006; revised May 11, 2007. The associate
editor coordinating the review of this manuscript and approving it for publica-
tion was Dr. Ilya Pollak. This work was presented in part at the 24th IEEE Con-
ference of Electrical And Electronics Engineers, Eilat, Israel, November 15–17,
2006. This work was supported in part by the KITE Consortium of the Israeli
Ministry of Industry and Trade, by Muscle, a European network of excellence
funded by the EC 6th framework IST programme, and by a fellowship from
The Yitzhak and Chaya Weinstein Research Institute for Signal Processing at
Tel-Aviv University.

The authors are with the School of Electrical Engineering, Tel-Aviv Univer-
sity, Tel-Aviv 69978, Israel (e-mail: alba@eng.tau.ac.il; burstyn@eng.tau.ac.il).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2007.906741

One of the powerful tools for pattern recognition that uses a
discriminative approach is the support vector machine (SVM).
SVMs use linear and non-linear separating hyperplanes for data
classification. However, since SVMs can only classify fixed
length data vectors, this method can not be readily applied to
tasks involving variable length data classification. The variable
length data has to be transformed into fixed length vectors
before SVMs can be used.

Several attempts have been made to incorporate the SVM
method into variable length data classification systems. The
SVM-Fisher method [1] offers a way of combining generative
models like HMMs with discriminative methods like SVMs.
Smith and Gales [2] applied the Fisher kernel to the speech
recognition problem and provided insight in support of the
Fisher kernel approach. In [3], the SVM-Fisher method was
extended and applied to the problem of speaker verification
using Gaussian mixture models (GMMs). In [4] the Gaussian
DTW kernel (GDTW) was introduced. GDTW is based on the
dynamic time warping (DTW) technique for pattern recognition
and on the Gaussian kernel. In [5], a discriminative algorithm
for phoneme alignment that uses an SVM-like approach is
presented. In [6] a hybrid SVM/HMM system is presented. A
set of baseline HMMs is used to segment the training data and
transform it into fixed length vectors, and a set of SVM models
are used for rescoring.

In this paper, we present a new algorithm that uses a set of ML
trained HMM models as a baseline system, and an SVM training
scheme to rescore the results of the baseline HMMs. In [7] we
first presented our method for discrete HMMs. In this paper
we discuss both discrete and continuous HMMs. In Section II,
we give a short overview of SVMs and SVM training tech-
niques. In Section III, we describe our algorithm for the discrete
HMM case, and two methods for training the SVM models. In
Section IV, we do the same for a continuous density HMM. In
Section V, we assess the performance of our algorithms on a
toy problem and on an isolated noisy digit recognition task. We
compare the results of our two new training methods to the re-
sults achieved using standard ML training. Although our pri-
mary application in this work is automatic speech recognition,
the same algorithms can be used in other applications that em-
ploy hidden Markov modeling.

II. BACKGROUND ON SVMS

The SVM [8]–[10], is a powerful machine learning tool that
has been widely used in the field of pattern recognition.

Let , , be a set of vectors
in and their corresponding labels. We refer to this set as the

1053-587X/$25.00 © 2008 IEEE

SLOIN AND BURSHTEIN: SVM TRAINING 173

training set. Let , where , be some map-
ping from the vector space into some higher dimensional fea-
ture space. The support vector machine optimization problem
attempts to obtain a good separating hyperplane between the
two classes in the higher dimensional space. It is defined as fol-
lows:

(1)

where denotes an inner product between two vectors, and
is some constant that can be determined using a cross validation
process. The Lagrangian dual problem of (1) is

(2)

where is referred to as the kernel
function. The choice of leads to a linear
SVM. Since the optimization problem is convex and Slater’s
regularity conditions hold, the dual problem can be solved in-
stead of the primal one, and both yield the same value (the min-
imum of the primal equals the maximum of the dual). The solu-
tion to this problem can be obtained using the efficient sequen-
tial minimal optimization (SMO) algorithm [11]. A new vector

will be classified as a member of the class with label 1 if

and as a member of the class with label otherwise. The ex-
pression can be shown to be equivalent to

where is the solution of the dual problem, (2). Since all the
computations are done using the kernel function, there is no
need to work in the higher dimensional space. The computation
of the kernel function may be very simple, even if the underlying
space is of very high or even infinite dimension.

The SVM algorithm described so far can only deal with the
binary case, where there are only two classes. There are several
possibilities of extending the binary class SVM into a multi-
class SVM. We will describe two such possible extensions. The
first is a natural extension referred to as the one against all
method (see [12]). The second is a transformation to the one
class problem [13].

A. The One Against All Method

The one against all algorithm solves the multi-class problem
by training a binary SVM for each of the classes. Each SVM
is trained using all the data vectors from all classes. The data
vectors that belong to the class are used as positive examples and
all other vectors are used as negative examples. More formally,

let be a set of data vectors and their corresponding
labels, where and . Let

, be a set of SVMs such that
and . Suppose for simplicity that . The th

model is trained using , where

if
otherwise.

A new data vector will be classified as a member of class if

B. The One Class Transformation Method

In the one class method [13], binary SVM models are
trained simultaneously using all the training data. Again, let

be a set of data vectors and their corresponding
labels, where and . A reasonable
multiclass SVM optimization criterion is

This formulation aims to train SVMs such that the score
given to each data vector by the correct model is higher than
that given to it by the rest of the models.

The solution to this problem has high complexity. It can, how-
ever, be slightly modified and transformed into a simpler one
class problem by adding the terms to the objective function

(3)

This modified problem was shown to give results that are very
similar to that of the original one [14]. The modified problem
can be reformulated as a one class SVM problem using the fol-
lowing notation: Let denote the concatenation of the SVM
vector parameters , and let

such that

Using this notation, we can rewrite (3) as

which is a one class SVM optimization problem that can be
solved efficiently using a slightly modified SMO algorithm [11].

174 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

III. SVM RESCORING OF DISCRETE HMMS

In this section, we focus on discrete HMMs, and propose a
discriminative algorithm that uses a set of ML trained HMMs
as a baseline system, and the SVM training scheme to rescore
the results of the baseline system. We begin with the problem
formulation, followed by the description of a variable to fixed
length data transformation for discrete HMMs.

A. Problem Formulation

Let be some observed sequence, whose
elements take values in a finite set of symbols ,
i.e., . Also consider an HMM over an alphabet
of size , with states and with a parameter set denoted by .
The parameter set is comprised of discrete output probability
distributions , and transition probabilities

, . The probability that the HMM assigns
to the observation and the state sequence is

The probability that this HMM assigns to is obtained by sum-
ming over all possible state sequences,

We consider the following problem. Suppose that there are
different classes and corresponding HMMs. The parameter
set of the th HMM is denoted by . Suppose that the prior
probability of class is . Given the observed sequence, ,
we wish to predict its class. If the parameter vectors, , were
known, then we could use the following maximum a posteriori
(MAP) classifier that minimizes the classification error

(4)

In our problem, however, the parameter vectors, , are un-
known. Thus before applying the MAP classifier, (4), we need
to estimate them using a training database, ,

where is the true
label of the time series observation, . The standard parameter
estimation method uses the ML approach, according to which

is selected so as to maximize

(5)

which is the log-likelihood of the observations whose true class
is .

To implement this maximization, one typically applies the
expectation-maximization (EM) method [15], that yields a local
maximum of (5). A lower complexity alternative to (4) is the
classification rule

(6)

In our case, where the probabilistic model is an HMM, (4) is
implemented by the forward algorithm while (6) is implemented

by the Viterbi algorithm, and it is well known in the speech
recognition literature (e.g., [16, Sec. 8.2.3, p. 388]) that both
approaches yield similar results. Similarly, a lower complexity
good alternative to maximizing (5) is to maximize

(7)

Here we attempt to find the best parameter vector, , and state
sequences, , for each observation for which . In our
HMM case, (5) is implemented by the Baum-Welch (EM) algo-
rithm, while (7) is implemented using the segmental -means
algorithm [17]–[19, Sec. 6.15.2, pp. 382–383] that applies a
two steps iterative algorithm. In the first step, it obtains the
best segmentation (state sequence) corresponding to each data
sample (for which). In the second step, it re-estimates
the parameter vector using these segmentations. Relations
between the Baum Welch and Segmental -means algorithms
were studied in [20].

If our HMM parametric model is correct then it is well known
that the ML estimator is asymptotically unbiased and efficient
(i.e., it achieves the Cramer-Rao lower bound on estimation
error). Thus, if the parametric model is accurate, and there is
a sufficient amount of training data, then ML estimation (5) [or
the alternative (7)] together with MAP classification (4) [or (6)]
is a successful combination, even though it is not guaranteed
to minimize the error rate even under these ideal conditions. In
practice, however, these two assumptions may not hold. For ex-
ample, in speech recognition, where HMM modeling is the stan-
dard approach, the true model is in fact unknown. Furthermore,
ML training of considers only the observations in the
database whose true class is . That is, ML training considers
only positive examples, and neglects all the other observations
in the training database, whose class is different than . Dis-
criminative training methods, on the other hand, attempt to train
the parameters , such that for positive training examples (for
which) the MAP score (or alternatively,

) would be high, and for negative training
examples (for which) the score would be lower. In the
following, we show how such discriminative training can be re-
alized using an SVM.

Note that our model is different than the conditional Markov
random field considered, e.g., in [21]–[25] where, conditioned
on the observation sequence, the label sequence is modeled by a
Markov random field. These works usually assume a supervised
or semisupervised training, where the label sequence is known
at least for part of the training database. Recently, computa-
tionally intensive algorithms were also suggested for the more
difficult case of unsupervised training of a conditional Markov
random field model [24], [25].

B. A Variable to Fixed Length Data Transformation

Let denote the most likely state sequence
corresponding to according to some given HMM with param-
eter vector , i.e.

SLOIN AND BURSHTEIN: SVM TRAINING 175

We now describe a transformation that yields a new vector
from and . The vector , whose length is

, is composed of the vectors , , the vectors ,
and the scalar .

The vector describes the count (nonnormalized empirical dis-
tribution) of the symbols that were emitted at state , as deter-
mined by . For example means symbol
1 was emitted once and symbol 3 was emitted twice at state
. More formally, let , and let denote

an identity vector of length whose th element is 1 (e.g.,
), then

(8)

Similarly, the vector describes the count (non-normalized
empirical distribution) of the state transitions that occurred from
state , as determined by . For example,
means that two transitions occurred from state to state 1, and
one transition occurred from state to state 2. More formally, let

, let denote the size of the
set , and let denote an identity vector of length whose
th element is 1. Then

(9)

The element is a scalar that is the joint log probability of the
observations and the state sequence , i.e.,

(10)
Fig. 1 illustrates the transformation method. The obser-
vation sequence is transformed
using a 3 state HMM with a codebook of 4 symbols. The
most likely state sequence in this example is assumed to be

.
As we will show, the suggested transformation allows us to

discriminatively adjust the score of the discrete HMM system
using the SVM technique. We proceed by rearranging the log
HMM parameters in a vector form, denoted by ,

(11)

where the th element of is

(12)

and the th element of is

(13)

Using the above notation, we can express the HMM score for
and , , in terms of and . Let denote the
vector without its last element. Recall that the last element of

was denoted by , so that

(14)

Fig. 1. An example of the variable to fixed length data transformation. In this
example we consider a 3 state HMM with a codebook of four symbols.

We can, therefore, write

(15)

Now, in our problem we have different classes, repre-
sented by corresponding HMMs with parameter vectors ,

. The Viterbi algorithm (in a Bayesian setting)
estimates the unknown class using (6), which can also be
written as

(16)

where is the most likely state sequence corresponding to ,
according to the th HMM, is the prior probability of class

, and

(17)

The standard recognizer, (16), can be viewed as the following
two stage recognition process. In the first stage, for each model

, we obtain the most likely state sequence ,
and use it to form . In the second stage, for each model ,
we make a decision based on the set of scores

, . These scores are obtained by linear

176 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

classifiers with parameters that are functions of the
HMM parameters.

In order to improve on the standard recognizer, our first
proposal is to modify only the second stage of the recognition
process, by using a different set of linear classifiers, with
parameters , , that are obtained by
an SVM training approach. Since unlike ML training, the SVM
training is discriminative, the new approach is likely to im-
prove the recognition rate. Our classifier applies the following
recognition rule:

where

In the second transition we used (14) and the similar decompo-
sition , where is a scalar. In the last transition,
we used (15). Thus we can express the SVM score as

where

(18)

The SVM score can thus be regarded as an adjustment of the
baseline HMM score. We can regard the elements of as tuning
values for the HMM log parameters in , and as a scaling pa-
rameter. The adjusted parameters described in (18) correspond
to an unnormalized HMM, with the following set of parameters.
Let us decompose into two types of elements, similar to (11)
as follows:

(19)

Then by (11), (12), (13), (18), and (19), the vector cor-
responds to the following unnormalized transition and output
probabilities

(20)

(21)

Similarly, the scalar corresponds to the unnormalized prior
probability

(22)

Note that unlike a standard HMM, the unnormalized output and
transition probabilities of our unnormalized HMM do not nec-
essarily sum up to one, i.e., and are not neces-
sarily one. On the other hand, the prior probabilities of the dif-
ferent models can be renormalized, since this renormalization
is equivalent to subtracting a constant from the score of each

model. Also note that if we set , and ,
then we return to the standard HMM Viterbi score for . Thus,
the new model generalizes the baseline HMM model. While in
standard ML training it is essential to require a valid normalized
HMM, when using a discriminative training approach such as
SVM training, this normalization condition is not required any
more. In fact the unnormalized HMM can be viewed as a gen-
eralization of a plain HMM since it represents a wider family of
models, and by proper training it can achieve improved recog-
nition results.

Having defined the variable to fixed length data transforma-
tion, we proceed to describe two possibilities for training the
SVM parameters.

C. Training the SVM Models Using the One Against All
Method

The first step in training the SVM models is to transform the
training set using the baseline HMM system as was described in
Section III-B. Each observation is transformed using all HMMs.
Let and be a set of time
series observations and their corresponding labels, i.e.,
where is the set of classes. and comprise
the training set. Let denote the set trans-
formed using all HMMs. denotes the transformation of
using the th HMM. Let denote transformed using the

th HMM, so that . Since we are dealing
with a multiclass problem, we can use one of the multiclass ap-
proaches described in Section II, the one against all method or
the transformation to the one class method [13]. We proceed to
describe the application of both methods to our problem in de-
tail.

The one against all method, as explained in Section II, trains
each of the SVM models separately, but unlike standard ML
training, it uses both the positive and the negative examples for
training each model. In training SVM model , the parame-
ters of which we denote by , we use the utterances
transformed by HMM model , denoted by . The SVM label
vector is a vector whose elements are ei-
ther 1 or depending on whether the corresponding utterance
belongs to model or not

if
if

The optimization problem for model is

Each model is trained so it will tend to assign a positive score
to the utterances that belong to model , and it will tend to
assign a negative score otherwise.

SLOIN AND BURSHTEIN: SVM TRAINING 177

Fig. 2. The one-against-all training method.H denotes HMM modelm, and
~H denotes unnormalized HMM modelm.SV denotes SVM modelm. First,

the data is transformed using all HMM models. Each SVM model is trained
using the data transformed by the corresponding HMM model. Finally, each
HMM is combined with the corresponding SVM model to form a new unnor-
malized HMM.

We proceed to describe the recognition process. Given an un-
known observation , and HMM and SVM models trained
using the one against all method, a straight forward algorithm
for recognition is the following.

1) Find the set of most likely state sequences
corresponding to utterance using the baseline HMMs.

2) Compute the vector transformations ,
.

3) Use the following decision rule to choose the model that
best matches the observation

However, in order to make the recognition process as similar
as possible to the standard HMM method, we can represent the
rescoring SVM models as an unnormalized HMM, as described
in Section III-B. The recognition algorithm using the unnormal-
ized HMM set is as follows.

1) Find the set of most likely state sequences
of utterance using the baseline HMMs.

2) Compute the log likelihood of utterance and the set of
most likely state sequences , where

Fig. 3. The 2-HMM recognition process. H denotes HMM model m, and
~H denotes unnormalized HMM modelm. SV denotes SVM modelm. One

HMM is used to find the most likely state sequence of observation o and the
other is used to compute the score of the state sequence.

, using the unnormalized HMMs. The deci-
sion rule is shown in the equation at the bottom of the page,
(the superscript in and denotes that the output
and transition probabilities of model should be used).

We refer to this recognition method as the 2-HMM recog-
nition method. Figs. 2 and 3 summarize the one-against-all
training method and the 2-HMM recognition method.

At this point it seems reasonable to try and use the unnormal-
ized HMMs that we obtained to resegment the training database,
then to retrain a new set of unnormalized HMMs using the re-
segmented data, and to proceed iteratively. Unfortunately, em-
pirical evidence (see Section V) shows that when the one against
all method is used, the unnormalized HMMs cannot in general
be used for finding the best state sequence (i.e., they cannot be
used for segmenting the data). On the other hand, the one class
transformation training method described below, typically does
yield unnormalized HMMs that can be used for segmentation,
that is recognition can be done using the unnormalized HMM
set in the Viterbi recognizer as if they were plain HMMs.

D. Training the SVM Models Using the One Class
Transformation Method

As explained in Section II, the one class transformation
method [13] trains all SVM models together, using the entire

178 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

training set along with the correct label set . The optimiza-
tion problem is

All the models are trained simultaneously in an attempt to make
the score given by model to some transformed utterance
that belongs to the model (i.e.,), higher than that given
to the same utterance transformed by other models.

The use of the trained SVMs for recognition can be done
using the 2-HMM recognition method that was described above:
The SVM models along with the HMM models are combined
into a new set of unnormalized HMMs using (20)–(22). The
HMM set is used for segmentation and the unnormalized HMM
set is used for scoring. However, as was observed empirically,
when using the one class training method, the unnormalized
HMMs can typically also be successfully used in the standard
Viterbi recognition procedure as if they were plain HMMs. We
refer to this recognition procedure as the 1-HMM recognition
method. The 1-HMM recognition method makes it possible to
extend the training algorithm into an iterative one, where the
new unnormalized HMMs found in one step, are used for seg-
mentation in the next step. The iterative algorithm we propose
is the following.

1) Start with the set , which is the set of utterances trans-
formed by the baseline HMM set and train a set of SVMs.

2) Combine the set of SVMs with the set of HMMs used in the
previous step into a set of unnormalized HMMs (20)–(22).

3) Use the set of unnormalized HMMs found in the previous
step to create a new set of transformed vectors (8)–(10).

4) Go back to step 1 with the new set .
This approach resembles the segmental -means algorithm

that iteratively segments the data and re-estimates the HMM
parameters. The fact that our new unnormalized HMMs can
be used for segmentation facilitates the incorporation of our
algorithm into existing systems, since no changes are required
in the recognition stage. Fig. 4 summarizes the one class
transformation method. Recognition can be performed using
the 2-HMM approach (one HMM or unnormalized HMM for
segmentation and another unnormalized HMM for scoring), as
shown in Fig. 3, or by using the 1-HMM approach (only one
unnormalized HMM for both segmentation and scoring).

E. Discussion and Relation to Previous Work

The one against all training method has the advantage that it
is computationally less demanding than the one class method.
On the other hand, the performance of the one class method is
usually better, since its criterion accurately expresses our goal,
that the score of the correct model would be higher as much as
possible than the score of all other models. The goal of the one
against all method is to achieve a high positive score for positive
examples and a high negative score for negative examples. This
goal may be too difficult to achieve, and should be regarded as a

Fig. 4. The one class transformation training method. First, the data is trans-
formed using all HMM models. All SVM models are trained using all the trans-
formed data. Finally, each HMM is combined with the corresponding SVM
model to form a new unnormalized HMM.

sufficient condition for proper classification, but not a necessary
one. That is, even if this goal cannot be achieved, good classi-
fication may be achieved using the less demanding criterion of
the one class method.

Our main assertion in this paper is that one class (noniterative)
training with 2-HMM recognition improves the performance on
the training database, since our classifier is a strict generaliza-
tion of the standard HMM, and the criterion used in the training
is the actual recognition objective. If the training set is suffi-
ciently large, so that there is no over-fitting, then we also expect
improvements on the test. Although iterative training may fur-
ther improve performance, this additional improvement is not
guaranteed, neither is the convergence of the iterations. This is
due to the fact that the new trained unnormalized HMM may not
be suitable for segmenting the data. We note, however, that the
iterative training is expected to work better when using the one
class method, since by attempting to set the parameters of the
classifier, such that positive examples would get a high positive
score and negative examples would get a high negative score,
the one against all method requires more than is necessary to
obtain a good recognizer, and usually needs to shift the HMM
parameters far away from their original values that yielded an
initial good segmentation. On the hand, the goal of the one class
method can usually be achieved by a relatively small shift from
the original HMM parameter set. Thus the new parameter set
can sometimes still be good enough for segmenting the data.

We now show how our new transformation relates to the
Fisher score, used in the Fisher kernel [1]. The Fisher score is
defined as

Our transformation can be expressed as follows:

SLOIN AND BURSHTEIN: SVM TRAINING 179

where is the element-wise product between two vectors, is
the HMM parameter set, and is defined in (15).
Since the classifiers we use and the SVM training scheme in-
volve only linear functions of , this is equivalent to using

Thus we are essentially using a modified Fisher kernel with
replacing , and with the additional el-

ement . By (15) this element is a linear function
of and thus it can be eliminated. However it is included for
convenience. Recall that we can achieve at least the same per-
formance as the baseline system. The function can
be represented using the summation (15), unlike the much more
complicated function . Consequently, in spite of the
close relationship between our kernel and the Fisher kernel, the
development in Section III-B that motivates our method as a dis-
criminative training improvement to the HMM score [see the
discussion following (17)], cannot be applied to motivate the
Fisher kernel. In addition, the representation of the new model as
an unnormalized HMM cannot be applied to the Fisher kernel.

IV. SVM RESCORING OF CONTINUOUS HMMS

In this section, we present an extension of our algorithm to
continuous output probability HMMs. The algorithm uses the
following transformation, which is similar to the one presented
in Section III-B.

A. A Variable to Fixed Length Data Transformation

Let be some observed sequence, such
that . Also consider a mixture of Gaussians output
probability HMM with states and mixtures, and with a
parameter set denoted by . The parameter set is comprised
of transition probabilities , , and the
mixture weights, mean vectors and diagonal covariances of
the Gaussians, , and ,

, . We denote

(23)

(and are row vectors). Consider the state and mix-
ture sequence , where and

. Note that is the complete data used
in the Baum-Welch algorithm. The probability that the HMM
assigns to is

The probability that this HMM assigns to is obtained by sum-
ming over all possible state and mixture sequences, ,

Let , where and ,
denote the most likely state and mixture sequence corre-
sponding to according to this HMM, i.e.

We now describe a transformation that yields a new vector
from and . The vector , whose length is

, is composed of the vectors , ,
the vectors , , the vectors , ,

and the scalar .

(24)

As in the discrete case, the vector describes the count (non-
normalized empirical distribution) of the state transitions that
occurred from state , as determined by , and is defined by (9).

The vector describes the count (non-normalized empirical
distribution) of the mixtures that were traversed according to

and belong to state . For example,
means the most likely state and mixture sequence contains
four instances of state , one of which with mixture 2 and the
other three with mixture 3. More formally, let

, let denote the size of the set , and let
denote an identity vector of length whose th element is 1,
then

(25)

The elements are elements of length that are used to
capture information regarding the means of the th mixture in
state . Let , then

(26)

(and are row vectors).
The element is a scalar that is the joint log probability of

the observations and state and mixture sequence , i.e.,

(27)

Now assume we have different classes and corre-
sponding HMMs. The parameter set of the th HMM is

180 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

denoted by . The Viterbi algorithm (in a Bayesian setting)
estimates the unknown class using the following rule

(28)

where is the most likely state and mixture sequence corre-
sponding to , according to the th HMM, and is the prior
probability of class .

The standard recognizer, (28) can be viewed as the following
two stage recognition process. In the first stage, for each model

, we obtain the most likely state and mixtures
sequence . In the second stage, for each model , we make a
decision based on the set of scores ,

.1

Using (27) and (23), we can write the HMM score for and
as follows:

(29)

where

In order to improve on the standard recognizer we propose to
use a set of linear classifiers, with parameters ,

, that are obtained by an SVM training approach. Our
classifier applies the following recognition rule:

where

(30)

Let us decompose into three types of elements, similar to
(19) in the discrete case, as follows:

(31)
The claims below motivate our new method.

1A variant on the above rule is to obtain only the most likely state se-
quence of the mth model, q , and then to make a decision based on
log (p P (o;q j�)), for m = 1; . . . ;M .

Claim 4.1: The SVM score given in (30) can be viewed as the
HMM score given in (29) with a modified set of unnormalized
HMM parameters

(32)

where ,

(33)

(34)

(35)

(36)

(37)

(38)

We prove the claim in Appendix I.
can thus be interpreted as the score of an unnormal-

ized HMM with parameters , , , , and . Recall
that in a continuous unnormalized HMM the transition probabil-
ities do not necessarily sum up to one, and the Gaussian mixture
models do not necessarily integrate to one. In fact, in the contin-
uous case we have an additional degree of freedom, since each
Gaussian density function is raised to the power of . If we set

for all models then we obtain a standard unnormalized
HMM.

The SVM models can be trained as described in
Sections III-C and III-D. The following claim asserts that
our method can produce any variance-constrained unnormal-
ized HMM (i.e., an arbitrary unnormalized HMM, except
for its variance components, that are identical to those of the
given HMM). The implication is that our method yields the
variance-constrained unnormalized HMM that yields the best
discrimination, either in the sense of the one against all method
or in the sense of the one class transformation method.

Claim 4.2: Consider an arbitrary HMM defined by , ,
, , and , where , ,

and . Also consider an unnormalized HMM de-
fined by , , , and (i.e., it is an arbitrary unnor-
malized HMM, except that it has the same variance parameters
as the given HMM). Then there exists a vector

SLOIN AND BURSHTEIN: SVM TRAINING 181

such that (33)–(37) transform the given HMM to the given un-
normalized HMM.

Proof: The claim is proved by setting

where is given in (38).
Note that in the discrete HMM case a similar claim applies:

The transformation defined by (20)–(22) can yield an arbitrary
unnormalized HMM. Hence, in the discrete case the training
produces the best unnormalized HMM in the sense of the one
against all or the one class transformation method.

B. Relation to Previous Work

As in the discrete case, we proceed to show how the suggested
transformation (24) relates to the Fisher score. Recall that the
Fisher score is defined as

Our transformation can be expressed as follows:

where is the element-wise product between two vectors, is
the HMM parameter set excluding the covariance matrices, and

Since the classifiers we use and the SVM training scheme in-
volve only linear functions of , this is equivalent to using

V. EXPERIMENTS

In this section, we describe experiments conducted using
our algorithm on a toy problem and on an isolated noisy digit
recognition task, and compare the results to the standard ML
trained HMM system. Both discrete and continuous HMM
models are considered. Note that although continuous HMMs
typically yield better results than discrete HMMs in the task of
speech recognition, discrete HMMs are computationally more
efficient.

A. Toy Problem

Our continuous HMM algorithm was first applied to a toy
problem where there is a model mismatch, to demonstrate the
benefit of our approach under model mismatch conditions. We
used three continuous HMMs with 5 states and 2 mixtures per
state, as underlying distributions for three classes.

TABLE I
THE RESULTS OF THE ONE-CLASS TRAINING METHOD. C = 2

The transition probability matrix of each HMM was left to
right, such that when the process is in state , it can either remain
in that state or skip to the next state, . The self transition
probabilities were determined by drawing them at random with
uniform probability in the range [0,1], and then if the drawn
value, , was less than 0.5, it was reset to , such that all
transition probabilities were set in the range [0.5,1]. The last
state is an absorbing state, that is its self transition probability
was 1. The resulting self transition probabilities of states 1–4 of
the first HMM were 0.7689, 0.7604, 0.8729, and 0.5134. The
state transition probabilities of states 1–4 of the second HMM
were 0.9257, 0.8407, 0.5159, and 0.8689, and the state transi-
tion probabilities of states 1–4 of the third HMM were 0.6119,
0.9456, 0.6919, and 0.9056. The feature vector was 26-dimen-
sional. The output vector in each state was distributed as a mix-
ture of two Gaussians, with mean vector components that were
chosen at random, statistically independent of the other compo-
nents, such that and ,
where is the mean of some th mixture component at state
. Similarly, each variance component of the Gaussians was

chosen at random, statistically independent of the other com-
ponents, using a uniform distribution in [0,10]. We note that the
qualitative behavior of our results did not change much when
the experiment was repeated with another realization of HMM
parameters.

Each HMM was used to generate a training set of 300 sam-
ples and a test set of 300 samples. The three classes were then
modeled using three 5 state HMMs with a single mixture at each
state. The HMM parameters were estimated using the training
set and the ML approach. The parameters were then adjusted
using our continuous one-class transformation training algo-
rithm, and the 2-HMM recognition method. The parameter
was chosen through a process of 10-fold cross validation from
the set .
The results are presented in Table I.

As a comparison, when there was no model mismatch, and
the three classes were modeled using three 5 state HMMs with
two mixtures, the recognition rate was 100% both on the training
and on the test data. Thus this example demonstrates that under
mismatch conditions, where our model is far from the true one,
our new approach can significantly improve the recognition rate
(74.91% improvement on the test set).

B. The TIDIGITS Database

The TIDIGITS corpus [26] is a multispeaker isolated and
continuous digit vocabulary database of 326 speakers. It con-

182 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

sists of 11 words, “1” through “9” plus “oh” and “zero.” In our
experiments, we used only the isolated speech part of the data-
base. The training set we used in our experiments was comprised
of 112 speakers, 55 men and 57 women. Each digit was uttered
twice by each speaker, so we had a total of 224 utterances for
each digit. Our test set was comprised of 113 speakers, 56 men
and 57 women, and a total of 226 utterances per digit.

Isolated digit recognition on this database using the stan-
dard Gaussian mixture HMM yields very high recognition rates
(close to a 100%). We therefore added white Gaussian noise
with variance equal to the signal power, obtaining a low, 0 dB
signal-to-noise ratio (SNR).

C. Discrete HMMs

The baseline discrete HMM speech recognition system was
trained using the HTK toolkit [27]. At the first stage, feature ex-
traction was performed on the training and test sets. The feature
vector was comprised of 12 Mel-frequency cepstral coefficients,
a log energy coefficient and the corresponding delta coefficients,
for a total of 26 coefficients. The frame rate was 10 ms with a 25
ms window size. The feature vectors extracted from the training
set were used to create a linear codebook of 150 symbols with a
diagonal covariance Mahalanobis distance metric. The training
and test data were then transformed into discrete symbol se-
quences, and 11 left-to-right discrete HMM models were trained
using the quantized training set. Each discrete HMM model con-
tained 10 emitting states and two non-emitting entry and exit
states. The HMMs were trained using 8 segmental -means iter-
ations for parameter initialization, followed by 15 Baum-Welch
iterations. The recognition rate using this system was 89.18%
on the test set and 94.85% on the training set.

The discrete HMM parameters obtained using the max-
imum likelihood estimation were used as the baseline system.
We tested our algorithm with both the one-against-all SVM
training method and the one class transformation SVM training
method. We used the hidden Markov toolbox for Matlab [28]
and the probabilistic model toolkit (PMT) [29] to work with
the unnormalized HMM and SVM models.

1) The One Against All Method: The SVM models were
trained using the OSU SVM toolbox [30]. The value of the
parameter for each of the models was chosen from the set

through
a fivefold cross-validation process. The training data was
partitioned into five sets. Each time a different set was used
as the test set and a model was trained using the other four
sets. The cross validation recognition rate was defined as the
average recognition rate on all five sets. was set to the
value that yielded the highest cross validation recognition
rate. The selected values of for classes were

, re-
spectively.

After the value of was selected for a particular model,
the training process was repeated using that value and all the
training data. The SVM models and the baseline HMMs were
combined to form unnormalized HMM models (20)–(22). When
the unnormalized HMMs were used as if they were plain HMMs
in the Viterbi recognizer (1-HMM recognition), the recognition
rate did not show an improvement compared to the baseline

TABLE II
THE RESULTS OF APPLYING THE ONE-AGAINST-ALL TRAINING METHOD TO

DISCRETE HMMS

system. The 2-HMM recognition method gave a 27.81% recog-
nition rate improvement compared to the baseline system. The
results are summarized in Table II.

2) The One Class Transformation Method: The SVM
models were trained using the libSVM toolbox [31]
with some modifications. was chosen from the set

through a tenfold
cross-validation process. The training data was partitioned into
ten sets. Each time a different set was used as the test set and
all models were trained using the other nine sets. was set
to the value that yielded the best cross validation recognition
rate when using the 1-HMM recognition method (i.e., when
the unnormalized HMM was used in the Viterbi recognizer).
We then trained the models using all the training data and the
same value of . The SVM and HMM models were combined
to form unnormalized HMMs. We tested the recognition rate
both using the 1-HMM recognition method and the 2-HMM
recognition method. We continued the process iteratively, using
the unnormalized HMM set to resegment the training data at
each iteration, for a total of 30 iterations. The results of the
first and last iterations are presented in Table III. The rest
are shown in Fig. 5. The graphs show the recognition rate on
the test and train data using the 1 and 2 HMM recognition
methods. Both graphs slightly fluctuate, and are in general
increasing. The recognition rates using both methods are close
and coincide from iteration 17 on. The recognition rate on the
test set increases and eventually fluctuates around 93.3%.

D. Continuous HMMs

We conducted experiments using a single mixture baseline
system and a 5 mixture baseline system. The baseline speech
recognition systems were trained using the HTK toolkit [27]. At
the first stage, feature extraction was performed on the training
and test sets. The feature vector was comprised of 12 Mel-fre-
quency cepstral coefficients, a log energy coefficient and the
corresponding delta and acceleration coefficients, for a total of
39 coefficients. Cepstral mean normalization was applied. The
frame rate was 10 ms with a 25 ms window size. The training
set was used to produce 11 left-to-right single mixture contin-
uous HMM models, and 11 left-to-right, 5 mixture continuous
HMM models. Each HMM model contained 10 emitting states
and two non-emitting entry and exit states. A diagonal covari-
ance matrix was used. The single mixture HMMs were trained
by using 3 segmental -means iterations for parameter initial-
ization, followed by 7 Baum-Welch iterations. The 5 mixture
HMM models were trained by first producing 11 single mixture
HMMs, initialized using 3 segmental -means iterations. The
number of mixtures at each state was then incremented by 1, by
splitting the mixture with the largest mixture weight, and then

SLOIN AND BURSHTEIN: SVM TRAINING 183

TABLE III
THE FIRST AND LAST ITERATIONS USING THE ONE CLASS TRAINING METHOD FOR A DISCRETE HMM. THE PARAMETER C WAS SELECTED THROUGH

A TENFOLD CROSS-VALIDATION PROCESS

Fig. 5. The results of the one class training method in the discrete HMM case.

by reestimating the parameters using 7 Baum-Welch iterations.
The process was repeated until 5 mixture models were obtained.
The recognition rate using the single mixture Gaussian system
was 88.58% on the test set and 91.59% on the training set. The
recognition rate on the 5 Gaussian system was 92.75% on the
test set and 97.52% on the training set.

We used the single mixture system to test both the
one-against-all SVM training method and the one class
transformation SVM training method. The 5 mixture system

was only used to test the one class transformation SVM training
method using the 2-HMM recognition method. We used the
hidden Markov toolbox for Matlab [28] and the probabilistic
model toolkit (PMT) [29] to work with the unnormalized
HMM models. In all the experiments described below, the
training data was normalized so that all vector elements were
in the interval [,1]. This normalization was applied due to
numerical reasons.

1) The One Against All Method: The SVM models
were trained using the OSU SVM toolbox [30]. The pa-
rameter of each word model was chosen from the set

through a fivefold
cross-validation process. The results using the 2-HMM recog-
nition method were 73.25% recognition rate on the test set
and 76.17% on the training set. In light of that, no further
experiments were conducted using the one-against-all training
method. As was explained in Section III-E, the one class
transformation method is typically better than one against all.

2) The One Class Transformation Method, Single Mixture
Models: The SVM models were trained using the libSVM
toolbox [31] with some modifications. First, was selected
from the set

The training data was partitioned into two sets consisting of
90% and 10% of the data. The SVM models were trained using
90% of the data with each possible value of , and the system
was tested on the 10% cross validation data using the 2-HMM
recognition method. The value that maximized the cross valida-
tion recognition rate was selected. After choosing , the SVM
models were trained using the entire training set, and tested
using the 2-HMM recognition method. The baseline system was
evaluated using both the Viterbi algorithm and the forward al-
gorithm, and both algorithms yielded very similar results.

Recall that in the continuous HMM case, each Gaussian den-
sity function is raised to the power of . In Table IV, we present
the results of our method with 2-HMM recognition, both when
the parameter of each model can attain an arbitrary value,
and when the parameters of all models are forced to be equal.
In the latter case, the parameters of the SVMs are tied to-
gether, and thus after the training they can all be normalized to
one (multiplying the vectors of the SVMs by a positive con-
stant does not affect the recognition results). Since parameter

184 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

TABLE IV
THE RESULTS OF THE ONE CLASS TRAINING METHOD IN THE SINGLE MIXTURE CONTINUOUS HMM CASE. THE PARAMETER C WAS SELECTED THROUGH A

CROSS VALIDATION PROCESS. THE VALUE OF C FOR THE TIED SYSTEM WAS 2 AND THE VALUE OF C FOR THE UNTIED SYSTEM WAS 2

tying did not affect the results, we continued our experiments
with the tied SVM system.

When we tried to use the 1-HMM approach, we observed
a significant performance loss. The following iterative method
produced an unnormalized HMM that can be successfully used
in the 1-HMM recognition operation mode. Although this rec-
ognizer is not as good as the 2-HMM recognizer that we start
with, the advantage of 1-HMM recognition is that it uses the
standard recognition algorithm (the Viterbi algorithm). Thus,
we are able to significantly improve on the baseline by only
replacing the parameters of our HMM (from the normalized
baseline HMM to the unnormalized reestimated HMM). From
(33)–(37), we see that if we replace by

where is some constant that satisfies ,
then the new -normalized unnormalized HMM will be shifted
closer to the original HMM. Thus for sufficiently small, we
would be able to use the -normalized unnormalized HMM also
for segmenting the data, i.e., it would be possible to apply the
1-HMM recognition method successfully.

We continued our experiments by fixing to the value
that was used to produce the results of Table IV (tied SVMs).
We continued the training iteratively, using the unnormalized
HMM created at each step for segmentation in the next step.
The recognition results at each iteration were measured both
for the -normalized SVM and for the non-normalized SVM
(). We used 6 iterations, and was selected from the
set , as follows.
The training set was partitioned into seven sets that constitute
70%,5%,5%,5%,5%,5%,5% of the data. At the first iteration,
70% of the data was used to train the SVM models using the
selected value of and to create unnormalized HMM models
using all possible values of . The value of was chosen so as
to maximize the 1-HMM recognition rate using the unnormal-
ized HMM on 5% of the training data. After was selected for
the first iteration, 75% of the data was used to train the SVM
models and derive the unnormalized HMMs to be used in the
second iteration. The process was repeated until 6 values of

, one for each iteration, were chosen. The training process
was then done using the entire training set and the recognition
rate at each iteration was evaluated. The selected values of
were (0.0135, 0.0385, 0.026, 0.001, 0.026, 0.006). The results
are presented in Fig. 6 (the baseline results are indicated by
a horizontal line). In each graph and each iteration, the SVM
training is conducted by using the segmented data produced
by the unnormalized HMM that we have at the beginning of
the iteration. In the 2-HMM recognition, no case, nor-
malization is not applied after training the SVMs. As can be
seen, the results of the 2-HMM recognition method without

Fig. 6. The results of the one class training method for single mixture contin-
uous HMMs.

normalization are generally higher than the results achieved
using normalization. However, the use of -normalization
enables the application of the standard recognition method
(1-HMM), with a significant error rate reduction compared to
the baseline system.

3) The One Class Transformation Method, Five Mixture
Models: We trained the unnormalized HMM models using
the 5 mixture HMM models as a baseline system (with both
the Viterbi and forward algorithms) and the one class trans-
formation method. We tested the performance of the system

SLOIN AND BURSHTEIN: SVM TRAINING 185

TABLE V
THE RESULTS OF THE ONE CLASS TRAINING METHOD FOR FIVE MIXTURES CONTINUOUS HMMS AT SNR = 0 dB

Fig. 7. The results of the one class training method on the test database for five
mixtures continuous HMMs at SNR = �5 dB.

using 2-HMM recognition (i.e, the baseline HMMs were used
for segmentation and the unnormalized HMMs were used for
scoring). We used cross validation to determine the value of the
parameter , and set it to . The results are summarized
in Table V.

The above experiment was repeated on the same database,
using the same algorithms, except that the SNR was changed
to . Fig. 7 presents the results on the test database for
different values of the parameter . The baseline results are also
shown. As can be seen, the results are robust to the value of
over a wide range of values. As in the previous experiments, a
cross-validation database can be used to estimate a good value
of . The maximum improvement of our method compared to
the baseline is 36.2% reduction in the error rate. The baseline
performance on the training database is 95.8% correct, while
our method yields 100% correct in the range .

Another aspect of our new approach is that it provides more
robustness to the estimated model. This property is in agreement
with the fact that SVM training searches for the hyperplane with
the best separation between positive and negative training exam-
ples. To demonstrate this attribute of our approach, we trained
the five mixture HMM system on the same isolated part of the
TIDIGITS database at , using the standard (base-
line) and new (one class, 2-HMM mode) training methods. We
then tested the performances of the resulting recognition sys-
tems at SNRs of 3, 7, and 12 dB. Fig. 8 presents the results for
different values of the parameter . As can be seen, the new
method yields a much better robustness to SNR mismatch be-
tween the train and test conditions. At the baseline

Fig. 8. The results of the one class training method on the test database for five
mixtures continuous HMMs. Training was performed at SNR = 7 dB.

performance is 87.85% recognition rate on the test, while our
new method yields 97.54% recognition rate for the optimal .
At the baseline performance is 88.13% recogni-
tion rate on the test, while our new method yields 99.2% recog-
nition rate for the optimal . As a comparison, we have also
evaluated the performance of the baseline under optimal training
conditions (i.e., without mismatch) and obtained the following.
When we train at the recognition results on the
test data at the same SNR conditions () are 97.55%
correct. When we train at the recognition results
on the test data at the same SNR conditions () are
99.48% correct. Thus our new method significantly improves
the robustness of the trained system in an SNR region around
that used in the training, and brings it close to (and sometimes
even beyond) the matched training results. We note that when
the mismatch is larger, the improvement of our method com-
pared to the baseline degrades.

VI. CONCLUSION

In this paper, we presented the SVM rescoring of hidden
Markov models algorithm. The algorithm offers a discrimina-
tive training scheme that utilizes the SVM technique to rescore
the results of an ML trained baseline discrete or continuous
HMM system. The rescoring model can be represented as an
unnormalized HMM. The unnormalized HMM can be viewed
as a generalization of a plain HMM since it represents a wider
family of models, and by proper training it can achieve improved
recognition results.

186 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

We started by describing the variable to fixed length data
transformation that uses the most likely path, as determined by
the baseline HMM system, to transform variable length data into
fixed length data vectors. We then presented two methods for
training the SVM models, one of which was extended to an it-
erative algorithm similar to the segmental -means algorithm.
We explained how the baseline HMMs can be combined with
the trained SVM models to create a set of unnormalized HMMs.
Two recognition methods were presented: 1-HMM recognition,
that uses only the unnormalized HMM set as if it were a set of
plain HMMs, and 2-HMM recognition, that uses the baseline
HMM set for segmentation and the unnormalized HMM set to
rescore the results of the baseline HMM set. We described the
algorithm for both discrete and continuous output probability
HMMs.

We assessed the performance of our algorithm on a toy
problem and on an isolated noisy digit recognition task. We
tested both training methods and both recognition algorithms
and compared them to the standard ML trained system for both
the discrete and continuous cases. We observed significant
reduction in word error rate. One class noniterative training
and 2-HMM recognition yielded a significant improvement
in the recognition rate, both for discrete and for continuous
HMMs. The iterative one class training algorithm yielded
further improvements in the discrete HMM case.

There are several issues that were not dealt with in this paper
and require further research. We have restricted our attention
to isolated speech recognition. An extension to continuous
speech recognition can be achieved using 1-HMM recognition
by combining the unnormalized HMMs into composite unnor-
malized HMMs. Another possible extension can be achieved
using 2-HMM recognition by using an N-best list (a list of N
most likely paths) with SVM rescoring.

Another straight forward extension of our algorithm is
training the unnormalized HMM models with parameter tying.
This can be done using the one class SVM training method.

Another possibility is to modify the continuous HMM trans-
formation by computing the derivatives with respect to the vari-
ance elements as well. The transformation will then be

instead of

where is the HMM parameter set and is the HMM parameter
set excluding the covariance elements.

APPENDIX

PROOF OF CLAIM 4.1

Proof: Using (24) and (31) we have

and using (9), (25), and (26) we get

(39)

Recall that is a vector of length whose th element is 1 and
the rest are 0. Therefore, (39) is equivalent to

Recall that and
. Thus

Plugging this into (30) and then using (29) yields,

SLOIN AND BURSHTEIN: SVM TRAINING 187

Rearranging terms we get

(40)

Let us now focus on the term inside the third summation on the
right hand side and show that it can be interpreted as the tuning
of the mixture means.

(41)

where

Substituting (41) in (40) and rearranging terms yields

The definitions (33)–(37), thus, yield (32).

REFERENCES

[1] T. Jaakkola, M. Diekhans, and D. Haussler, “A discriminative frame-
work for detecting remote protein homologies,” J. Computat. Biol., vol.
7, pp. 95–114, 2000.

[2] N. Smith and M. Gales, Speech Recognition Using SVMs, T. G. Di-
etterich, S. Becker, and Z. Ghahramani, Eds. Cambridge, MA: MIT
Press, 2002, vol. 14, Adv. Neural Inf. Process. Syst..

[3] V. Wan and S. Renals, “Speaker verification using sequence discrim-
inant support vector machines,” IEEE Trans. Speech Audio Process.,
vol. 13, no. 2, pp. 203–210, Mar. 2005.

[4] C. Bahlmann, B. Haasdonk, and H. Burkhardt, “On-line handwriting
recognition with support vector machines – A kernel approach,” in
Proc. 8th IWFHR, 2002, pp. 49–54.

[5] J. Keshet, S. Shalev-Shwartz, Y. Singer, and D. Chazan, “Phoneme
alignment based on discriminative learning,” in 9th Europ. Conf.
Speech Commun. Technol. (INTERSPEECH), 2005.

[6] A. Ganapathiraju, J. E. Hamaker, and J. Picone, “Applications of
support vector machines to speech recognition,” IEEE Trans. Signal
Process., vol. 52, pp. 2348–2355, Aug. 2004.

[7] A. Sloin and D. Burshtein, “Support vector machine rescoring of
hidden Markov models,” presented at the 24th IEEE Conf. Elect.
Electron. Eng., Eilat, Israel, Nov. 2006.

[8] V. N. Vapnik, Statistical Learning Theory. New York: Wiley, 1998.
[9] C. Burges, “A tutorial on support vector machines for pattern recogni-

tion,” Data Mining Knowl. Discov., vol. 2, no. 2, pp. 121–167, 1998.
[10] A. Ng, Cs229 Stanford Lecture Notes 2003 [Online]. Available: http://

www.stanford.edu/class/cs229/notes/cs229-notes3.pdf
[11] J. C. Platt, Fast Training of Support Vector Machines Using Sequen-

tial Minimal Optimization, B. Scholkopf, C. Burges, and A. J. Smola,
Eds. Cambridge, MA: MIT, 1999, vol. 12, Adv. Kernel Methods –
Support Vector Learning, pp. 185–208.

[12] C.-W. Hsu and C.-J. Lin, “A comparison of methods for multi-class
support vector machines,” IEEE Trans. Neural Netw., vol. 13, no. 3,
pp. 415–425, Mar. 2002.

[13] V. Franc and V. Hlavác, “Multi-class support vector machine,” in Proc.
16th Int. Conf. Pattern Recog. (ICPR’02), 2002, vol. 2, pp. 236–239.

[14] O. L. Mangasarian and D. R. Musicant, “Successive overrelaxation for
support vector machines,” IEEE Trans. Neural Netw., vol. 10, no. 5,
pp. 1032–1037, Sep. 1999.

[15] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. R. Statist. Soc., vol. 39,
no. 1, pp. 1–38, 1977.

[16] X. Huang, A. Acero, and H.-W. Hon, Spoken Language Processing.
Englewood Cliffs, NJ: Prentice-Hall PTR, 2001.

[17] L. R. Rabiner, J. G. Wilpon, and B.-H. Juang, “A segmental k-means
training procedure for connected word recognition,” AT&T Tech. J., pp.
21–40, May-Jun. 1986.

[18] B.-H. Juang and L. R. Rabiner, “The segmental k-means algorithm for
estimating parameters of hidden Markov models,” IEEE Trans. Acoust.,
Speech, Signal Process., vol. 38, no. 9, pp. 1639–1641, Sep. 1990.

[19] L. R. Rabiner and B.-H. Juang, Fundamentals of Speech Recogni-
tion. Englewood Cliffs, NJ: Prentice-Hall PTR, 1993.

[20] N. Merhav and Y. Ephraim, “Maximum likelihood hidden Markov
modeling using a dominant sequence of states,” IEEE Trans. Signal
Process., vol. 39, no. 9, pp. 2111–2115, Sep. 1991.

[21] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random fields:
Probabilistic models for segmenting and labeling sequence data,” in
Proc. 18th Int. Conf. Machine Learn. (ICML), MA, Jun. 2001.

[22] B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov net-
works,” in Adv. Neural Inf. Process. Syst. 16, S. Thrun, L. Saul, and B.
Schölkopf, Eds. Cambridge, MA: MIT Press, 2004.

[23] Y. Altun, I. Tsochantaridis, and T. Hofmann, “Hidden Markov sup-
port vector machines,” presented at the 20th Int. Conf. Mach. Learn.
(ICML), Washington, DC, Aug. 2003.

[24] L. Xu, D. Wilkinson, F. Southey, and D. Schuurmans, “Discriminative
unsupervised learning of structured predictors,” in Proc. 23rd Int. Conf.
Mach. Learn., Pittsburgh, PA, Jun. 2006, pp. 1057–1064.

[25] W. Xu, J. Wu, and Z. Huang, “A maximum margin discriminative
learning algorithm for temporal signals,” in Proc. 18th Int. Conf. Pat-
tern Recogn. (ICPR’06), Hong Kong, Aug. 2006, vol. 2, pp. 460–463.

[26] R. G. Leonard, “A database for speaker-independent digit recognition,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
1984, vol. 9, pp. 328–331.

188 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 1, JANUARY 2008

[27] HTK3 – Hidden Markov Model Toolkit Version 3.2.1, , 2002 [Online].
Available: http://htk.eng.cam.ac.uk

[28] K. Murphy, Hidden Markov Toolbox for Matlab 1998 [Online]. Avail-
able: http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html

[29] Probabilistic Model Toolkit (PMT) HP Labs [Online]. Available: http://
www.hpl.hp.com/downloads/crl/pmt/

[30] J. Ma, Y. Zhao, S. Ahalt, and D. Eads, OSU SVM: A Support
Vector Machine Toolbox for Matlab 2001 [Online]. Available:
http://svm.sourceforge.net/license.shtml

[31] C.-C. Chang and C.-J. Lin, LIBSVM: A Library for Support Vector
Machines 2001 [Online]. Available: http://www.csie.ntu.edu.tw/~cjlin/
libsvm

Alba Sloin received the B.Sc. degree in electrical en-
gineering and computer science and the M.Sc. degree
in electrical engineering in 2003 and 2006, respec-
tively, from Tel-Aviv University, Tel-Aviv, Israel.

Her research interests include information theory,
machine learning, and signal processing.

David Burshtein (M’92–SM’99) received the B.Sc.
and Ph.D. degrees in electrical engineering in 1982
and 1987, respectively, from Tel-Aviv University,
Tel-Aviv, Israel.

During 1988–1989, he was a Research Staff
member in the Speech Recognition Group of IBM,
T. J. Watson Research Center. In 1989, he joined the
School of Electrical Engineering, Tel-Aviv Univer-
sity, where he is presently an Associate Professor.
His research interests include information theory
and signal processing.

