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Abstract

A cylindrical coordinate colour space (lightness, saturation/chroma, hue) is derived
from an opponent colour space in the RGB space. It is shown how cylindrical co-
ordinate colour models widely used in the literature are related to or can be re-
duced to the derived model, thereby contributing to creating a unified cylindri-
cal coordinate colour model. In particular, the widely used saturation expression
max(R, G,B)−min(R,G, B) is derived from the proposed model. Properties of the
derived chroma and saturation expressions are examined. Finally, some applications
of cylindrical coordinate colour spaces are briefly reviewed.
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1 Introduction

The representation of the colour coordinates of images in cylindrical coordi-
nates (hue, saturation/chroma, lightness), is widely used in the image analysis
and computer vision community. There are however two main difficulties as-
sociated with its use:

(1) the large choice of available transformations from an RGB space, e.g.
HSV (Smith, 1978), HSL, HMMD (Manjunath et al., 2002), HSB and
HSI (Gonzalez and Woods, 1992).

(2) the fact that some of these transformations have their saturation nor-
malised by the lightness, making them unsuitable for some tasks.

The latter concern can be understood by looking at the saturation images
shown for three colour models in Figure 1. The saturation for the HSV and
HSL models represent percentages of the maximum saturation obtainable for
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(a) original (b) HSV (c) HSL (d) max−min

Fig. 1. (a) Original image. (b) HSV, (c) HSL and (d) max−min saturation.

a given lightness. This implies that in the lightness ranges where the satura-
tion range is small, there is a large variation in the percentages. This can be
seen by the “noisy” appearance of the dark image regions (e.g. shadows) for
the HSV colour space and the dark and light image regions (e.g. reflections
on the arm) for the HSL colour space. Furthermore, because the majority of
RGB coordinates of the inside of the white bowl are (255, 255, 254), the satu-
ration percentage for the bowl is high for the HSL saturation and low for the
HSV saturation. Removing the saturation normalisation by lightness results
in the saturation image shown in Figure 1d, which is more useful for many
applications.

In this paper, we derive a cylindrical coordinate colour space from basic princi-
ples. We also show how existing colour spaces are related to or can be reduced
to the derived colour space, thereby contributing to a unification of these
colour spaces.

The derivation follows that of the cylindrical coordinate version of the CIELAB
colour space (Fairchild, 1997). For the CIELAB colour space, an opponent
colour space (OCS) is created in the XYZ colour space. The axes represent
lightness (L∗), and the red-green (a∗) and blue-yellow (b∗) opponent colours
modelled on the human visual system. A non-linear transform and weighting
on these coordinates is used to impose the approximate perceptual uniformity
property on the CIELAB space. A chromaticity coordinate (a∗, b∗) is repre-
sented in polar coordinates by the chroma C∗

ab (the Euclidean distance from
the lightness axis) and the hue angle hab expressed in degrees starting from
the positive a∗ axis (red) and turning in an anti-clockwise direction.

In order to be able to convert from the RGB space to the CIELAB space, one
needs the colour coordinates of the primary colours of the image sensor (for the
RGB to XYZ conversion), as well as the coordinates of the scene illuminant
(for XYZ to CIELAB). This information is often not available for images that
are analysed, for example arbitrary images obtained from the internet. While it
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is possible to estimate these values, one adds extra uncertainty to the analysis
process by doing this. This shows that building a cylindrical coordinate colour
system directly in the RGB space is often desireable, as one has access to polar
chromaticity coordinates through a simpler transform requiring no estimated
values.

We follow a similar process to the CIELAB transformation: (1) Creation of
an OCS in the RGB space, (2) Conversion to cylindrical coordinates. We
do not attempt to impose any type of perceptual uniformity on the space.
While this leads to a completely usable colour space, it does not account for
the sqturation expression max(R, G, B) − min(R,G, B) that is often used.
We therefore additionally demonstrate how this saturation expression can be
derived from this space.

The main contributions of the paper are:

(1) a sound derivation of a cylindrical coordinate colour space within the
RGB space.

(2) the unification of several existing cylindrical coordinate colour spaces by
demonstrating how they reduce to or are related to the derived space.

The paper is organised as follows. Section 2 presents the derivation of the
cylindrical coordinate colour space from an opponent colour space. Section 3
concentrates on the chroma and saturation terms. A summary of the transform
and inverse transform between the RGB and cylindrical coordinate spaces is
given in Section 4. A short review of aome applications is given in Section 5.
Section 6 concludes.

2 Derivation based on an Opponent Colour Space

One performs this transformation by first building an OCS in the RGB space
and then representing it in cylindrical coordinates. We do not specify if the
RGB coordinates used in this paper are gamma corrected or not. More on the
effect of gamma correction can be found in Angulo and Serra (2007) and Serra
(2005).

2.1 Opponent Colour Space

We take an RGB space with coordinates R ∈ [0, 1], G ∈ [0, 1], B ∈ [0, 1]. To
convert to an OCS, a new axis is placed in the RGB space. This axis is usually
between the black (0, 0, 0) and white (1, 1, 1) corners of the RGB cube, and
hence contains all colours for which R = G = B. The coordinate on this axis
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gives a measure of the lightness I, and we therefore refer to it as the lightness
axis. A plane perpendicular to this axis and with origin at the intersection
with the lightness axis is chosen and all RGB coordinates are projected onto
this plane. The position on the plane gives information about the chromaticity
of a pixel, and it is therefore referred to as the chromatic plane.

A simple OCS is given by Plataniotis and Venetsanopoulos (2000):

I = R + G + B (1)

c1 = 2B −R−G (2)

c2 = R−G (3)

This OCS has the disadvantage that the red, green and blue corners of the
RGB cube have different Euclidean distances from the origin of the chro-
matic plane than the cyan, magenta and yellow corners. This leads to a non
hexagonally-shaped area of valid RGB coordinates in the chromatic plane.

The opponent colour space used by Lambert and Carron (1999) is normalised
so that the six abovementioned corners of the RGB cube projected onto the
chromatic plane all have unit Euclidean distance from its origin. The projec-
tion of the RGB cube onto the chromatic plane therefore has the shape of a
hexagon. This transformation is defined as 1 :

I =
1

3
(R + G + B) (4)

c1 = R− 1

2
G− 1

2
B (5)

c2 =

√
3

2
(G−B) (6)

The area of the chromatic plane containing c1 and c2 coordinates correspond-
ing to colours in the RGB unit cube is shown by the hexagon in Figure 2a. The
circle circumscribing the hexagon has a radius of 1. We adopt the notation
in which RGB vectors projected onto the chromatic plane take a subscript p.
Hence, for example, rp = (1, 0) and gp = (−1/2,

√
3/2) represent respectively the

coordinates of the projections onto the chromatic plane of pure red r = (1, 0, 0)
and pure green g = (0, 1, 0).

The RGB unit cube is shown in Figure 3. It is divided into six sectors which

1 In Lambert and Carron (1999), the hue angle turns in an unconventional way,
with green at 4π/3 and blue at 2π/3. We have modified the transformation by
exchanging the signs in Equation 6 so that the hue angle turns anti-clockwise, as
for the polar CIELAB transform.
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Fig. 2. (a) Chromatic plane. (b) Red-yellow sector of the hexagon on the chromatic
plane. The lower vertices correspond to the colours red (at the left) and yellow. The
angle H takes values between 0◦ and 60◦.

are projected onto the six sectors of the hexagon on the chromatic plane. The
following equation gives the sector of a colour with coordinates c = (R, G,B)
based on the order of magnitude of its coordinates

λ (c) =





0 if R > G ≥ B

1 if G ≥ R > B

2 if G > B ≥ R

3 if B ≥ G > R

4 if B > R ≥ G

5 if R ≥ B > G

(7)

The cube edge corresponding to each sector and its corresponding hexagon
edge on the chromatic plane are indicated by the italic numbers in Figures 3
and 2a.

In sector 1, the line between r and y in the RGB cube is projected onto the
hexagon edge between rp and yp on the chromatic plane. It is therefore clear
that this edge corresponds to a line of RGB coordinates having R and B
constant and only G varying. The same holds for all lines in the chromatic
plane parallel to the rpyp edge and lying within the first hexagon sector. This
can be generalised to all sectors of the hexagon as follows: for a given sector
of the hexagon, lines parallel to the hexagon edge of the sector and included
in the sector correspond to lines in the RGB space for which the coordinates
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Fig. 3. The RGB unit cube. The italic numbers indicate the edges corresponding to
the six sectors into which the RGB cube is divided.

with greatest and least magnitude for the sector (see Equation 7) are constant
and only the coordinate of intermediate magnitude varies.

An opponent colour space is also used by van de Weijer et al. (2005), with the
refinement that the lightness axis is between (0, 0, 0) and the coordinate of
the colour of the illuminant in RGB space ci = (α, β, γ)T . Using ci = (1, 1, 1)
produces an OCS similar to Equations 4 to 6, but with rotated chromaticity
axes and different normalisation.

2.2 Polar representation

A 3D-polar representation of an OCS is obtained by keeping the ligtness I
and expressing c1 and c2 in polar coordinates:

h = arctan
(

c2

c1

)
(8)

c =
√

c2
1 + c2

2 (9)

When substituting the OCS in Equations 5 to 6 into the above equations, pure
red has hue h = 0◦ (similar to the CIELAB space). Furthermore, the chroma
c = 1 for the six corners of the hexagon on the chromatic plane. Substituting
Equations 4–6 into Equation 9, one obtains

c =
√

R2 + G2 + B2 −RG−RB −GB (10)
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and into Equation 8, one obtains

h = arctan

( √
3(G−B)

2R−G−B

)
(11)

Using the alternative definition from Lambert and Carron (1999)

h =





arccos
(

c1
c

)
if c2 ≥ 0

360◦ − arccos
(

c1
c

)
if c2 < 0

(12)

where
c1

c
=

(
R− 1

2
G− 1

2
B√

R2 + G2 + B2 −RG−RB −GB

)
(13)

one obtains the hue expression derived in a more geometrical way for the
HSI model presented in Gonzalez and Woods (1992). Pratt (1991) presents a
similar transformation with the hue origin at blue and a different normalisation
that he calls the IHS colour coordinate system. With the OCS defined in van
de Weijer et al. (2005), h = 60◦ for pure red.

As it is clear that the lightness I is independent of the chromaticity coordinates
c1 and c2, one may replace Equation 4 by any measure of lightness.

3 Derivation of a saturation term

The chroma (Equation 9) is the Euclidean distance (L2 norm) of a colour pro-
jected onto the chromatic plane from the origin. It assumes its maximum value
at the six corners of the hexagon projected onto the chromatic plane. Colours
with hues which are not multiples of 60◦ have smaller maximum chroma val-
ues limited by the hexagon edges in Figure 2a. We use the term saturation
to describe chroma normalised so that the maximum value is 1 for all hue
values 2 . In other words, the hexagon projected onto the chromatic plane is
slightly deformed into a circle of unit radius by a normalisation factor, so that
the saturation assumes its maximum value for all points with projections on
the edges of the hexagon.

2 This is an abuse of the term saturation as defined in Fairchild (1997), but it is
used to be compatible with the image analysis literature.

7



3.1 Derivation of saturation expressions

Two equivalent saturation expressions can be derived in the chromatic plane.
The saturation definition above implies that one obtains the saturation by
dividing the the chroma c by the length of the line with the same hue extended
to the edge of the hexagon, or s = c/cmax. The red-yellow sector of the hexagon
in the chromatic plane is reproduced in Figure 2b, in which the upper vertex
is at the origin (0, 0), the lower left vertex is the projected red vector rp, and
the third vertex the projected yellow vector yp. It is simple to show using
Figure 2b that

cmax =

√
3

2 sin (120◦ −H)
(14)

for 0◦ ≤ H < 60◦. To make this equation valid for the values of H ∈ [0◦, 360◦),
it is sufficient to replace the H in the equation by

H∗ = H − k × 60◦where k ∈ {0, 1, 2, 3, 4, 5} so that 0◦ ≤ H∗ ≤ 60◦ (15)

The value of the saturation s ∈ [0, 1] is then

s =
2c sin (120◦ −H∗)√

3
(16)

This definition is particularly useful for obtaining an efficient inverse transfor-
mation.

The alternative definition is obtained through the use of similar triangles.
Using Figure 2b, we project point cp onto the orp axis along the line parallel

to rpyp, giving the point cr. By similar triangles: s = ||cp||
cmax

= ||cr||
1

, where || · ||
denotes the L2 norm on the chromatic plane. On the line orp, one has G = B.
Substituting this into Equation 10, one obtains either s = R−G or s = R−B.
Along the lines parallel to rpyp, only the G coordinate varies (see Section 2.1).
Hence only the value of R − B is the same at both points cp and cr. This is
the same as max(R,G, B)−min(R, G, B) for sector 1. The derivations for the
other five sectors are done similarly. This leads to the general expression for
the saturation

s = max (R, G,B)−min (R, G, B) (17)

It can easily be shown that this expression is a norm in the chromatic plane.
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3.2 Relation to existing cylindrical coordinate colour spaces

The Generalised LHS (GLHS) model by Levkowitz and Herman (1993) cal-
culates the lightness-normalised saturation for a lightness of the form L =
wmin min(R,G, B)+wmidmid(R, G, B)+wmax max(R, G, B), where wmin+wmid+
wmax = 1. The HSL and HSV models are obtained from the GLHS model for
specific values of these weights. By changing the definition of the saturation
to remove the lightness normalisation in the derivation of this model, one ob-
tains the above unique saturation expression (Equation 17) for all possible
lightness expressions (Hanbury, 2003). This saturation is called Diff in the
HMMD colour space (Manjunath et al., 2002).

An alternative chroma based on the L1 norm is derived and used in Hanbury
and Serra (2003), Serra (2005) and Angulo and Serra (2007). For completeness,
we present it here. The lightness I is defined by Equation 4. The chroma is
then:

cL1 =





3
2
(max−I) if I ≥ med

3
2
(I −min) if I ≤ med

(18)

where max = max(R,G, B), min = min(R, G,B) and med = median(R, G,B).

3.3 Comparison of the saturation and chroma formulations

We compare the distributions of the saturation and chroma formulations
discussed: the max−min saturation expression (equation 17), the L2 norm
chroma (equation 10), and the L1 norm chroma (equation 18). To calculate
the distributions, we start with a 256 × 256 × 256 RGB cube with a point
at each set of integer-valued coordinates. The saturation (chroma) values of
each point are calculated (as floating point values), and then rounded to the
nearest integer (only necessary for the L2 norm chroma). Histograms showing
the distribution of these integer values over 256 levels are shown in Figure 4.

The max−min saturation distribution is regular and symmetric around the
central histogram bin because of the normalisation coefficient which deforms
the hexagonally shaped sub-region of the chromatic plane into a circle. Con-
versely, the L2 chroma has a rather irregular distribution due to the rounding
of it floating point values. It also decreases very rapidly as one approaches
higher chroma values because it is calculated in the hexagonally shaped sub-
region of the chromatic plane. The L1 norm chroma approximates the L2

chroma well and the histogram is more regular.
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Fig. 4. The saturation and chroma histograms.

4 Transformations to and from the cylindrical coordinate space

As a summary, efficient algorithms to calculate the lightness, hue and satura-
tion from RGB coordinates are given here. The inverse transformation is also
derived. Matlab routines implementing the transformations are available on
http://www.prip.tuwien.ac.at/~hanbury.

4.1 RGB to cylindrical coordinates

One calculates a lightness measure, a saturation or chroma measure and a
hue. Due to the independence of the lightness and the saturation, one is free
to choose any lightness measure, e.g. different coefficients in the sum in Equa-
tion 4, such as those for the luminance measure in Poynton (1997). Saturation
using Equation 17 or chroma using Equation 10 or 18 may be used. The hue
may be equivalently calculated using Equation 11 or Equations 12 and 13. Al-
ternatively, one may use the hue measure based on the L1 norm and avoiding
trigonometric functions described in Angulo and Serra (2007).

For example, using Equations 4, 17 and 11 gives

i =
1

3
(R + G + B) (19)

s = max (R,G, B)−min (R, G,B) (20)
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h = arctan

( √
3(G−B)

2R−G−B

)
(21)

4.2 Cylindrical coordinates to RGB

One possible inverse transformation is given here. One first calculates the
chroma values from the saturation values (using Equation 16)

c =

√
3s

2 sin (120◦ −H∗)
(22)

where H∗ is given by Equation 15. From the chroma, one calculates

c1 = c cos (h) (23)

c2 = c sin (h) (24)

For the case where the hue is undefined: c1 = c2 = 0. To get the R, G and B
values, the following are used (derived from Equations 4 to 6):

R = I +
2

3
c1 (25)

G = I − 1

3
c1 +

1√
3
c2 (26)

B = I − 1

3
c1 − 1√

3
c2 (27)

5 Applications

Because the saturation or chroma terms are not percentages, it is possible to
directly compare them. This allows them to be used directly in colour morphol-
ogy. Colour morphology using lexicographical cascades with the max−min
saturation is discussed in Hanbury and Serra (2001a), while lexicographical
cascades in the L1 norm colour space are discussed in Angulo (2007). More
information on colour morphology can be found in a recent comparative study
by Aptoula and Lefèvre (2007).

The saturation or chroma measurements in this colour space have been used
as a weight differentiating between achromatic and chromatic pixels. The
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saturation-weighing based colour gradient (Angulo and Serra, 2003), defined
as

∇f(x) = s(x)×∇ch(x) + [1− s(x)]×∇i(x) (28)

gives a higher weight to the hue gradient ∇ch(x) if the saturation is high and
a higher weight to the lightness gradient ∇i(x) if the saturation is low. The
notation ∇c represents a circular centred gradient which takes the angular
nature of the hue component into account (Hanbury and Serra, 2001b). This
type of saturation-weighting has also been useful in the calculation of hue
statistics. As the hue is an angular value this should be done using circular
statistics (Fisher, 1993). The mean direction of a set of angular values is
calculated as follows: given a set of n angular values {a1, a2, . . . , an}, one takes
for each value ai a unit vector âi in the 2D plane with direction ai. The mean
direction is the direction of the vector resulting from taking the vector sum∑

i âi. While this can be directly applied to calculating a mean hue, hues
associated with low saturations should contribute less to the mean hue. This
is done by using a weighted vector sum as follows: given n hue/saturation
pairs {(h1, s1), (h2, s2), . . . , (hn, sn)}, the mean hue direction is the direction
of the vector resulting from taking the weighted vector sum

∑
i siĥi, where ĥi

is the unit vector with direction hi. These weighted hue statistics have been
successfully used in maintaining a background model for video surveillance
(Blauensteiner et al., 2006).

Angulo and Serra (2007) have made extensive use of the L1 norm chroma in the
creation of 2D lightness/chroma histograms. Alignments in these histograms
have been shown to correspond to interesting regions of an image, such as
highlights.

The saturation measures normalised by lightness, as found in the standard
HSV and HSL models, also have their uses. One example is in a visualisation
application where one wishes to replace the lightness or saturation of an im-
age by another function in order to enhance a certain aspect of the image.
Changing the lightness or chroma/saturation in the space derived in this pa-
per leads to the possibility that a colour may be moved out of the valid colour
gamut. An inverse transform to RGB could then lead to invalid RGB coordi-
nates (i.e. outside the RGB cube). An application example is setting all pixels
in an image with saturation above a threshold to have maximum saturation
(Demarty and Beucher, 1998). While the saturation thresholding should be
done using one of the saturation/chroma expressions presented in this paper,
it is easier to transform the pixel colours in the HSL or HSV space. Because
the saturation is expressed as a percentage in these spaces, one simply sets
the saturation of the relevant pixels to the maximum possible value without
the possibility of moving the colour outside the gamut. Another application
is replacing the lightness band of a colour image of a painting by a greyscale
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image of the same painting captured in the infrared band, thereby making the
relation of the underdrawing 3 to the colours more visible (Kammerer et al.,
2004).

6 Conclusion

We have derived a cylindrical coordinate colour representation based on an
opponent colour space in the RGB colour space. While a number of opponent
colour spaces are available in the literature, there is no standardised axis
orientation, leading to a large variability in the colour represented by the hue
origin. Furthermore, the proposed spaces tend to have different normalisations
leading to differently shaped regions obtained by projecting the RGB cube
onto the chromatic plane. We have proposed using an OCS which has it axes
oriented so that a hue of zero corresponds to red, as for the CIELAB space
and the spaces based on the GLHS model (Levkowitz and Herman, 1993).
Furthermore, the proposed OCS is normalised so that the area projected onto
the chromatic plane is in the form of a hexagon with each corner at a unit
Euclidean distance from the centre.

On the chromatic plane, we have shown how, in addition to using the distance
from the centre as a measure of chroma, one can derive the expression for
saturation s = max(R,G, B) − min(R,G, B). While the chroma can only
assume a maximum value of 1 for hue values which are multiples of 60◦,
saturation can assume a maximum value of 1 for all hue values. We have also
shown how the saturation of the GLHS model reduces to this saturation if the
normalisation by lightness is removed.

From the discussion of applications, it is clear that both models without sat-
uration normalisation by lightness (such as the proposed model), as well as
models with lightness-normalised saturation (such as the GLHS model) have
appropriate application areas.
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