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Abstract. The problem of image deblurring in the presence of salt and
pepper noise is considered. Standard image deconvolution algorithms,
that are designed for Gaussian noise, do not perform well in this case.
Median type filtering is a common method for salt and pepper noise re-
moval. Deblurring an image that has been preprocessed by median-type
filtering is however difficult, due to the amplification (in the deconvolu-
tion stage) of median-induced distortion. A unified variational approach
to salt and pepper noise removal and image deblurring is presented.
An objective functional that represents the goals of deblurring, noise-
robustness and compliance with the piecewise-smooth image model is
formulated. A modified L

1 data fidelity term integrates deblurring with
robustness to outliers. Elements from the Mumford-Shah functional, that
favor piecewise smooth images with simple edge-sets, are used for reg-
ularization. Promising experimental results are shown for several blur
models.

1 Introduction

Consider an image that has been blurred and contaminated by salt and pepper
noise. Typical sources of blur are defocus and motion [3]. Salt and pepper noise
is a common model for the effects of bit errors in transmission, malfunctioning
pixels and faulty memory locations [5].

Significant attention has been given to image deblurring in the presence of
Gaussian noise [3]. We focus on variational methods, that have an important
role in modern image deblurring research, see e.g. [20, 21, 23, 14]. Most methods
rely on the standard model g = h ∗ f + n, that is applicable to a large variety of
image degradation processes that are encountered in practice. Here h represents
a known space-invariant blur kernel (point spread function), f is an ideal version
of the observed image g and n is (usually Gaussian) noise. In this research, we
focus on the case of salt and pepper noise.

The assumption of Gaussian noise is a fundamental element of common im-
age deblurring algorithms. It is therefore not surprising that those algorithms
produce inadequate results in the presence of salt and pepper noise. This fact
is illustrated in Fig. 1. The top-left image in Fig. 1 is the 256 × 256 Lena im-
age, blurred by a pill-box kernel of radius 3 (7 × 7 kernel) and contaminated
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Fig. 1. Current image deblurring algorithms fail in the presence of salt and pepper
noise. Top-left: Blurred image with Gaussian noise. Top-right: Restoration using the
method of [23]. Bottom-left: Blurred image with salt and pepper noise. Bottom-right:

Restoration using the method of [23].

by Gaussian noise. Successful restoration is obtained using the state of the art
deblurring method of [23] (top-right). The bottom-left image in Fig. 1 is the
same blurred Lena image, now contaminated by salt and pepper noise of den-
sity 0.01. In this case restoration using the method of [23] is clearly inadequate
(bottom-right). Note that due to the inadequacy of the noise model, the algo-
rithm of [23] yields poor results even at lower salt and pepper noise density. The
regularization constants used to obtain Fig. 1 (top-right) and (bottom-right) are
the same: 10−3. Note that increasing the constant in the presence of salt and
pepper noise effectively disables deblurring, while only reducing the amplitude
of the noise.
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Fig. 2. The failure of the two-stage approach to salt-and-pepper noise removal and
image deblurring. Top-left: Blurred image. Top-right: Blurred image contaminated by
salt and pepper noise. Bottom-left: The outcome of 3× 3 median filtering, followed by
deblurring. Bottom-right: The outcome of 5×5 median filtering, followed by deblurring.

Salt and pepper noise removal is considered in the literature by itself. It is
commonly approached using median-type filters, see e.g [9, 13, 18]. Recently, a
promising variational method for impulse denoising was proposed by [7, 16, 17].

In the absence of unified algorithms for deblurring and salt-and-pepper noise
removal, the straightforward approach is to first denoise the image, then to
deblur it. This two-stage method is however prone to failure, especially at high
noise density. Image denoising using median-type filtering creates distortion that
depends on the neighborhood size; this error can be strongly amplified by the
deblurring process, even in regularized methods. Consider the example shown
in Fig. 2. The top-left image is the 256 × 256 Einstein image, blurred using a
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pill-box kernel of radius 4. The blurred image with added salt and pepper noise
(noise density 0.11) is shown top-right. The outcome of 3 × 3 median filtering
followed by deblurring using the algorithm of [23] is shown bottom-left. At this
noise level, the 3 × 3 neighborhood size of the median filter is insufficient, the
noise is not entirely removed, and the residual noise is greatly amplified by the
deblurring process. If the neighborhood size of the median filter is increased to
5×5, the noise is fully removed, but the distortion leads to inadequate deblurring
(bottom-right).

In this paper we present a unified method for image deblurring and salt-
and-pepper noise removal. Using a variational technique, we introduce a cost
functional that represents the goals of deblurring, robustness to salt and pep-
per noise, and compliance with a piecewise-smooth image model. Experimental
results exhibit effective image recovery, with various blur models and noise levels.

2 Unified Variational Framework

Image deblurring is an inverse problem, that can be formulated as a functional-
minimization problem. Let Ω denote a rectangular domain in R

2, on which the
image intensity function f : Ω → [0, 1] is defined. Ideally, the recovered image f̂
satisfies

f̂ = arg min
f

∫

Ω

Φ(h ∗ f − g)dA, (1)

where Φ(·) is a metric representing data-fidelity. In the case of Gaussian noise,
a quadratic data-fidelity term is used:

Φ(h ∗ f − g) = (h ∗ f − g)2. (2)

The inverse problem represented by Eq. 1 is known to be ill-posed: small
perturbations in the data may produce unbounded variations in the solution. To
alleviate this difficulty, a regularization term, that reflects some a-priori prefer-
ences, is added. The functional to be minimized thus takes the form

F =

∫

Ω

Φ(h ∗ f − g)dA + αJ (f) (3)

where J (f) is the regularization operator and α is positive weighting scalar.
Several regularization terms were suggested in the literature, for example
Tikhonov [22] L2 smoothness, Total variation (TV) L1 norm [20, 21], modified
L1 norm [1] and recently an integrated TV and wavelet coefficients regulariza-
tion [10, 11, 14].

In the presence of salt and pepper noise, the quadratic data-fidelity term (2)
is inadequate. In this paper, we use a robust (modified L1 norm) data-fidelity
term

Φ(h ∗ f − g) =
√

(h ∗ f − g)2 + η2 , (4)

where η is a small constant. The modified L1 norm shares the robustness to
outliers of the L1 norm, but avoids the resulting PDE from being singular at
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zero. Brox et al [6] have recently used the modified L1 norm as a fidelity term
for precise optical flow estimation.

The regularization terms that we use represent preference for piecewise-
smooth images with simple edge sets. In the Mumford-Shah [15] functional,
piecewise smooth images are favored by the term

∫

Ω\K
|∇f |2dA, where K is

the edge set. The simplicity of the edge set is maintained in the Mumford-Shah
functional by the line integral term

∫

K
dσ.

Ambrosio and Tortorelli [2] used the Γ -convergence framework to approxi-
mate the irregular Mumford-Shah functional by a sequence of regular function-
als. The edge set K is approximated by a smooth auxiliary function v, where
v(x) ≈ 0 if x ∈ K and v(x) ≈ 1 otherwise. Mumford-Shah regularization, using
the Γ -convergence approximation, has been recently used in electrical impedance
tomography [19] and in blind image restoration [4].

The unified functional is

Fε(f, v) =

∫

Ω

Φ(h ∗ f − g) dA + β

∫

Ω

v2|∇f |2dA +

+ α

∫

Ω

(

ε|∇v|2 +
(v − 1)2

4ε

)

dA. (5)

The first term in the functional is the modified L1 data-fidelity term (4). The
second term favors a piecewise smooth solution and corresponds to the term
∫

Ω\K
|∇f |2dA in the Mumford-Shah functional. The third term maintains the

simplicity of the edge set and corresponds to the line integral term
∫

K
dσ. Here

ε is a small positive constant, and α and β are positive weights.

3 Minimization techniques

The objective functional (5) depends on the functions f (recovered image) and
v (approximated edge map). Minimization with respect to both f and v is car-
ried out using the Euler-Lagrange (E-L) equations (6) and (8), subject to the
Neumann boundary conditions ∂v/∂N = 0, ∂f/∂N = 0, where N denotes the
normal to the boundary.

δFε

δv
= 2β v |∇f |2 + α

(

v − 1

2ε

)

− 2 ε α∇2v = 0 (6)

δFε

δf
= Φ′(h ∗ f − g) ∗ h(−x,−y) − 2β Div(v2 ∇f) = 0 (7)

Substituting the modified L1 norm (4) yields

δFε

δf
=

(h ∗ f − g)
√

(h ∗ f − g)2 + η2
∗ h(−x,−y) − 2β Div(v2 ∇f) = 0 . (8)

Studying the objective functional (5), it can be seen that it is convex and
lower bounded with respect to either of functions f and v if the other one is
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fixed. For example, given v, Fε is convex and lower bounded with respect to
f . Therefore, following [8], the alternate minimization (AM) approach can be
applied: in each step of the iterative procedure we minimize with respect to one
function and keep the other one fixed.

Obviously, Eq. (6) is a linear partial differential equation with respect to v.
On the contrary, (8) is a nonlinear integro-differential equation. Linearization
of this equation is carried out using the fixed point iteration scheme, as in [23,
8]. We set f = f l in the denominator, and f = f l+1 elsewhere, where l is the
current iteration number. Eq. (8) can thus be rewritten as

H(v, f l)f l+1 = G(f l), l = 0, 1, .... (9)

where H is the linear integro-differential operator

H(v, f l)f l+1 =
h ∗ f l+1

√

(h ∗ f l − g)2 + η2
∗ h(−x,−y) − 2β Div(v2 ∇f l+1)

and
G(f l) =

g
√

(h ∗ f l − g)2 + η2
∗ h(−x,−y).

Note that (9) is now a linear integro-differential equation in f l+1.
The two E-L equations (6) and (8) have now become two linear PDE’s, that

can be represented by two systems of linear equations. These systems are solved
in alternation. This leads to the following iterative algorithm:

Initialization: f 0 = g, v0 = 1.

1. Solve the Helmholtz equation for vn+1

(2β |∇fn|2 +
α

2ε
− 2α ε∇2) vn+1 =

α

2ε

2. Set fn+1,0 = fn and solve for fn+1 (iterating on l)

H(vn+1, fn+1,l)fn+1,l+1 = G(fn+1,l) (10)

3. if (||fn+1 − fn||L2
< ε1||f

n||L2
) stop.

Here ε1 is a small positive constant. Steps 1 and 2 both call for a solution of a
system of linear equations. Step 1 was implemented using the Minimal Residual
algorithm [24]. As for step 2, following Vogel and Oman [23], Eq. (10) can be
expressed in a quasi-Newton like form

fn+1,l+1 = fn+1,l −
[

H(vn+1, fn+1,l)
]−1

R(vn+1, fn+1,l) (11)

where

R(v, f) =
(h ∗ f − g)

√

(h ∗ f − g)2 + η2
∗ h(−x,−y) − 2β Div(v2 ∇f)
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and H(·, ·) is the approximation of the Hessian operator. It can be shown that the
operator H(·, ·) is self-adjoint and positive definite. Consequently H(·, ·)−1R(·, ·)
in (11) was computed via the Conjugate Gradients method.

Let fij denote the discretized image function. The forward and backward
finite difference approximations of the derivatives ∂f(x, y)/∂x and ∂f(x, y)/∂y
are respectively denoted by ∆x

±fij = ±(fi±1,j−fij) and ∆y
±fij = ±(fi,j±1−fij).

Hence, the discrete form of Eq. (6) is

2βvij

[

(∆x
+fij)

2 + (∆y
+fij)

2
]

+ α ·
vij − 1

2ε
− 2αε

(

∆x
−∆x

+vij + ∆y
−∆y

+vij

)

= 0,

and Div(v2 ∇f) in Eq. (8) is approximated by
(

∆x
+(v2

ij∆
x
−) + ∆y

+(v2
ij∆

y
−)

)

fij .

In the discrete case, the Neumann boundary conditions were implemented
as follows. The observed image was extended by adding margins that are a few
pixels wide. These margins were obtained by replicating the one-pixel thick outer
frame of the image. The margins were then convolved with the blur kernel. To
avoid artifacts, in the presence of salt and pepper noise, care should be taken
to ensure that the outer frame of the image is noise free. This limited task can
easily be achieved using a median filter.

All convolution procedures were performed in the Fourier Transform domain.
The algorithm was implemented in the MATLAB environment.

4 Experimental Results

The performance of the algorithm is presented in Figs. 3, 4 and 5. Fig. 3 (left)
is a blurred and noisy version of the Einstein image. The blur kernel was a
pill-box of radius 4; the noise density was 0.11. Fig. 3 (right) is the outcome
of the suggested method. The parameters were β = 0.5, α = 0.5, ε = 0.1. The
superiority of the proposed method, with respect to the sequential one (Fig. 2),
is clear.

In all the examples in this section, the convergence tolerance of ε1 = 1 ·
10−4 was reached with 3-5 external iterations (over n). The number of internal
iterations (over l) was set to 5. The constant η (Eq. 4) was set to 10−4.

The examples presented in Fig. 4 demonstrate the performance of the algo-
rithm at a variety of noise levels. The images in the left column were all blurred by
a pill-box kernel of radius 3. The noise densities were, from top to bottom, 0.01,
0.1 and 0.3. The corresponding recovered images are shown in the right column.
Despite the large variability of the noise level, the stability of the algorithm al-
lowed to use the same parameter set in the three cases: β = 0.5, α = 0.5, ε = 0.1,
as in the previous example.

Recovery of motion blur in the presence of salt and pepper noise is demon-
strated in Fig. 5. The 256 × 256 cameraman image was blurred by a motion
blur kernel of length=8, oriented at an angle θ = 25o with respect to the hori-
zon. The blurred image was further contaminated by salt and pepper noise of
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Fig. 3. Deblurring in the presence of salt and pepper noise. Left: Source image, blurred
with a pill-box kernel of radius 4, and contaminated by noise of density 0.11. Right:

Recovered image, using the suggested algorithm.

density 0.1 (top-left). The outcome of the method suggested in this paper (with
β = 0.6, α = 0.01, ε = 0.1) is shown top-right. The inadequacy of the sequential
strategy, of median filtering followed by conventional deconvolution is demon-
strated in the bottom row. The left image in that row is the outcome of 3 × 3
median filtering followed by the well known Lucy-Richardson restoration (Mat-
lab: deconvlucy). The right image in the bottom row was obtained in a similar
way, but with a 5 × 5 median filter.

5 Discussion

We presented a method for image deblurring in the presence of salt and pep-
per noise. Our unified approach to deblurring and outlier removal is novel
and unique. Experimental results demonstrate the superiority of the suggested
method with respect to a sequential approach, in which median-based noise re-
moval and image deconvolution are separate steps.

The algorithm is fast, robust and stable. Computation time for 256 × 256
images is about 3 minutes, using interpreted MATLAB on a 2GHz PC. The
robustness of the algorithm is demonstrated by the fact that similar parameters
can be used in the processing of different images. For example, the same param-
eter were used in Fig. 3 and in the three cases shown in Fig. 4. Furthermore,
note the fast numerical convergence in our experiments.

In the variational approach, image deblurring in the presence of noise is
expressed as a functional minimization problem. The functional consists of a
data fidelity term and a regularization term, that stabilizes the inherent ill-
posedness of the image deconvolution problem. The data fidelity term used in
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Fig. 4. Left column: The Lena image, blurred with a pill-box kernel of radius 3, and
contaminated by salt and pepper noise. The noise densities are (top to bottom) 0.01,
0.1 and 0.3. Right column: The corresponding recovered images.
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Fig. 5. The case of motion blur. Top-left: Blurred and noisy image. Top-right: Restora-
tion using the proposed method. Bottom-left: The outcome of 3 × 3 median filtering
followed by Lucy-Richardson restoration (Matlab: deconvlucy). Bottom-right: The out-
come of 5 × 5 median filtering followed by Lucy-Richardson restoration.

this study is the modified L1 norm. It is more robust than the common L2 norm
for images contaminated by outliers, and yet it is still differentiable and convex.

Elements from the Mumford-Shah segmentation functional, in the Γ -
convergence formulation, served as the regularization term. They reflect the
profound piecewise-smooth image model. Unlike total variation, the alterna-
tive edge-preserving stabilizer, the selected regularization term does not induce
nonlinearity beyond that of the fidelity term. An additional advantage of this
method is the production of the auxiliary function v, that is an approximated
edge map corresponding to the image. For example, Fig. 6 shows the v-maps
obtained during the processing of the blurred and noisy Lena (pill-box blur,
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Fig. 6. Approximated edge maps obtained as a by-product of the restoration process.
Left: The v-function that corresponds to the deblurring of the Lena image with a
pill-box kernel and noise density 0.1. Right: The v-function that corresponds to the
deconvolution of the Cameraman image with motion-blur and noise density 0.1.

Fig. 4) and Cameraman (motion-blur, Fig. 5) images. Finally, Mumford-Shah
regularization has profound theoretical advantages with respect to other edge
preserving methods. These aspects will be discussed in the full-length version of
this paper.
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