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Abstract

This paper proposes a method to auto-calibrate a static
camera in man-made worlds. The calibration is done with
vanishing points which are estimated with line segments.
Instead of a single image, the method uses constantly ac-
quired images from a camera. This online behavior of the
method has two advantages: A continuous and adaptive es-
timation of the vanishing points over thousands of images
suppresses the amount of noise in their positions. Newly
detected line segments can further improve the estimated
positions of vanishing points. This method is of practical
importance, because simple installation and maintenance
of cameras in video surveillance is a competitive advan-
tage. Furthermore, applications like tracking can profit, be-
cause knowledge about the scene geometry can be a poten-
tial clue. The method was evaluated in a broad range of
indoor and outdoor environments. The relative error be-
tween the internal camera parameter estimates and the true
values was on average 5%.

1. Introduction

A rough knowledge about the scene geometry and the
camera is a prerequisite for many applications in the area
of visual surveillance. For example, length and area ra-
tios are useful to recognize objects. Some object classifica-
tion methods need image rectification to remove projective
and affine distortion. The camera projection matrix allows
to project objects in a certain world point onto the image.
This is very useful for model-based applications. Some ob-
ject tracking applications use homographies to operate on
a world ground plane. Homographies between cameras or
between cameras and a common world ground plane are
a powerful cue to track objects in a multi-camera system.
Such systems are attractive, because object occlusions can
be handled more effectively than in the single camera case.

Unfortunately, to know these homographies or to know

Figure 1. This scene is from the PETS 2001
dataset 3, camera 1. This paper introduces
an online EM method that estimates the van-
ishing points and internal camera parameters
simultaneously from line segments (top). The
relative error of the focal length to the ground
truth was 5.3% after 100 steps. The bottom
image shows the orientation of the world co-
ordinate system (black) with respect to the
camera coordinate system (white).
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the camera projection matrix needs information about the
scene geometry and the camera. Usually, this information
is encoded as prior knowledge in many vision algorithms.
This paper concentrates on how to auto-calibrate a single,
static camera from vanishing points in man-made environ-
ments. Calibration determines the internal parameters of a
camera. The vanishing points are simultaneously estimated
from line segments, which are aligned in orthogonal world
directions.

Auto-calibration is of practical importance, because
simple installation and maintenance of cameras in video
surveillance is a competitive advantage. State-of-the-art
methods for manual calibration use known world points
and the corresponding image points. But manual calibra-
tion is awkward and time-consuming and needs experience
by the user. In the worst case, manual calibration must be
repeated each time a change in the environment happens,
which makes maintenance rather expensive.

Some other methods use trajectories of moving ob-
jects to estimate constraints on the camera projection ma-
trix (Bose [2], Lv [13]). The homography between a world
ground plane, e.g. road, and the image plane is estimated
using vanishing points and a constant object velocity as-
sumption. Unfortunately, these methods may suffer from
inaccurately measured trajectories and inaccurately mea-
sured point and line features respectively.

People have also used line segments in single images,
which are images of orthogonal lines in the world (Caprile
and Torre [4], Rother [14], Kosecka [11]). These line
segments intersect in vanishing points which constrain the
camera projection matrix. Despite these methods are fea-
sible for video surveillance applications, an adaptation to a
changing environment is not considered.

Coughlan [5] proposed to use the image gradients
in a Bayesian framework instead of an edge detector.
Deutscher [6] showed an interesting calibration approach
within this framework. Schindler [15] significantly ex-
tended this framework to group line segments and to com-
pute vanishing points. Unfortunately, it is not clear how to
automatically initialize their methods.

In contrast to these works, our approach is able to im-
prove the calibration and the estimation of the position of
vanishing points if new line segments are present. For ex-
ample, an object can suddenly appear in the world scene
or the illumination conditions improve and permit a more
accurate detection of line segments. The adaptive behav-
ior of the approach averages the estimated positions of the
vanishing points which suppresses noise. Another aspect
of our approach is a plausibility test between the estimated
focal length and the focal length of the lens.

Section 2 presents important requirements about the
world scene and the camera. Section 3 and section 4 discuss
the approach. Experiments and results (section 5) show the

applicability of the approach. Section 6 concludes this pa-
per.

2. Requirements of the approach

The approach requires restrictive, environmental charac-
teristics:

1. The mounting of the camera must be rigid and the lens
must have a fix focal length.

2. The world scene viewed by the camera must contain
orthogonal directions. These directions are given by
straight-lined objects that are partly imaged as line
segments. Usually, man-made structures are build in
an orthogonal manner. In Coughlan [5] these world
scenes are called Manhattan worlds.

To handle the Manhattan world assumption with more
care, knowledge of the lens and the camera and assumptions
about the camera are required:

1. We assume that the image sensor’s pixel size and the
focal length of the lens is known. In general, the true
focal length and the focal length of the lens are not
equal. However, a tolerance interval for the true focal
length can be given. In our experiments this tolerance
was set to 10%.

2. The skew of the image sensor’s pixel is assumed to be
zero and the aspect ratio of the pixel’s side lengths is
assumed to be constant and known.

3. In some scenes vanishing points lie close to infinity or
only two prominent directions are present. Under such
conditions the principal point must be constrained to
be close to the image center.

3. Initialization method

The basic information to estimate vanishing points are
line segments which are detected from an acquired se-
quence of images. Our approach is closely related to the
work of Kosecka [11] and Rother [14]. Figure 2(a) shows a
flow chart of the proposed initialization method.

Especially lenses with wide viewing angles are substan-
tially distorted. Therefore, the acquired image should be
rectified using a lens distortion model. The type of the dis-
tortion model and the parameters of the model are either
known, i.e. a model is chosen and the parameters are pre-
computed for a specific lens, or the choice of a model and
the parameter estimation could be done by an automatic
method as suggested by Devernay [7]. Tests have shown
that this method works with moderate distortions. It is no
solution for heavily distorted images. Practically, to crop
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Figure 2. Flow charts of the initialisation and
the refinement methods.

the images uniformly at all edges reduces the distortion, be-
cause distortion decreases towards the image center.

The Canny detector computes edges in the rectified im-
age. Line segments {l1, . . . , lL} are detected as linear edges
using a method suggested by Guru [8]. Each line segment
lj = aj × bj is defined by the line segment end points aj

and bj which are vectors in the homogeneous image coor-
dinates.

The gradient computation in the edge detector is not ro-
bust to noise. A preceding averaging over some images sub-
stantially improves the accuracy of the gradients.

3.1. Detecting vanishing points

A vanishing point v is an intersection point of a sub-
set of {l1, . . . , lL}. In imaged Manhattan worlds most line
segments have to intersect in a number of vanishing points
which encode the dominant and orthogonal directions. Usu-
ally, two or three orthogonal directions are present in a
world scene (m ∈ {2, 3}), but m > 3 is also possible.

Kosecka [11] used the orientation of the line segments to
detect vanishing points. Peaks of the orientation histogram
group {l1, . . . , lL} into m sub sets. Unfortunately, line seg-
ments with the same orientation can also intersect in differ-
ent vanishing points in some situations.

Our method avoids this problem by using RANSAC
(Random Sample Consensus) and is similar to the work
of Rother [14]. The simple idea of RANSAC is to con-
struct repeatedly a vanishing point v = li × lj . li and lj
are chosen randomly from {l1, . . . , lL}. A line segment
lk ∈ {l1, . . . , lL} − {li, lj} will be an inlier, if lk meets
v within a given error σ. RANSAC tries to find a vanish-
ing point v where a maximal number of line segments are
inliers.

Generally, line segments are uncertain due to noisy im-
ages. Hence, a first order error analysis is done in all esti-
mations. See Heuel [10] for a rigorous discussion among
this topic. Following Liebowitz [12], the isotropic noise in
the end points aj and bj is modeled as Gaussian random
variable ξ

aj = āj + ξ, bj = b̄j + ξ, ξ ∼ N (0, σI3×3), (1)

where āj and b̄j are the true end points and I is the 3 × 3
identity matrix.

The error of lj meeting v can be formulated with this
simple noise model. In general, lj will never meet v per-
fectly due to noise. However, a straight line l̄j can be con-
structed which will meet v exactly. See figure 3 for the ge-
ometric details. Liebowitz showed that l̄j is the MLE of the
true line segment āj × b̄j . The errors for aj and bj are the
distances d(aj , āj) and d(bj , b̄j).

In contrast to Rother, RANSAC is used consecutively
to detect the vanishing points. To avoid that a vanishing
point vi lies within the uncertainty of a previously detected
vanishing point vj a test statistics T is computed by

T = (vi − vj)�Σ−1
j (vi − vj) (2)

where Σj are the variance co-variance matrices of vj . If no
incidence happens, the set of line segments will be reduced
by the line segment inliers and RANSAC is repeated. Ex-
periments have further shown that RANSAC will perform
more robust, if line segments are chosen according to their
pixel length.

3.2. Calibration

Vanishing points v1, . . . , vm give
(
m
2

)
constraints on the

IAC ω3×3 (Image of the Absolute Conic). ω can be inter-
preted as a metric of the uncalibrated space. ω is a symmet-
ric matrix and has 5 degrees of freedom. The textbook of
Hartley and Zisserman [9] provides more information about
the IAC. Furthermore, our assumptions of zero skew s and a
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Figure 3. Geometric illustration: The line seg-
ment lj does not meet exactly the vanishing
point v.

constant aspect ratio r yield two more constraints on ω. To
assume that the principal point p = (u0 v0)� is close to the
image center gives further two constraints on ω. All these
constraints can be formulated with the following equations:

v�
i ωvj = 0 1 ≥ i, j ≥ m, i �= j (3)

(1 0 0)�ω(0 1 0) = 0 (4)

(1 r 0)�ω(0 − 1 0) = 0 (5)

ωp = (0 0 1)� (6)

For m > 1 a solution of ω can be computed. If more than
two vanishing points are detected, the linear equations sys-
tem formed by the equations in 3-6 is over-determined. An
optimal solution of ω in a least-squares sense can then be
computed using SVD (Singular Value Decomposition).

To know ω is equal to know the internal camera parame-
ters

ω = K−�K−1, (7)

with

K =




f s u0

0 rf v0

0 0 1


 .

f is the focal length. K can be computed using a Cholesky
decomposition of ω.

A solution for K can be incorrect, because information
about the orthogonality of world directions is lost during the
imaging process. A simple way to test the plausibility of a
solution of K is to test the relative error between f and the
focal length of the lens f0. If the relative error is smaller
than a maximal error threshold ε

f − f0

f0
< ε, (8)

the solution of K is accepted, otherwise it is rejected and the
initialization method is repeated. This test is sufficient for a
correct solution of K, if the principal point is constrained.
The condition that ω is positive definite and that a Cholesky
decomposition is possible is necessary but not sufficient.

4. Refinement method

Figure 2(b) shows a flow chart of the proposed refine-
ment method. The problem now is to group line segments in
new images that meet the current vanishing point estimates.
Simultaneously, these vanishing point estimates should be
re-estimated using the expected grouping. This very general
problem can be solved with the EM algorithm (Expectation
Maximization). The RANSAC-based initialization method
(see section 3) gives an initial guess of the vanishing point
estimates. The refinement method uses an online version of
the EM algorithm which is discussed in Brochu [3].

4.1. Likelihood function

The likelihood of each li to meet a vk can be written as a
weighted mixture of likelihood functions

m∑
k=1

Pr(vk)p(li|vk, σ) + Pr(noise)p(noise|σ). (9)

Pr(vk) are the prior probabilities of vk. These priors are ini-
tialized with the relative frequency between line segments
meeting vk and the total number L of line segments de-
tected. If li does not meet any vk, it will be a noisy line
segment. The prior probability of the occurrence of noisy
line segments is always

Pr(noise) = 1 −
m∑

k=1

Pr(vk). (10)

We assumed, that the likelihood value p(noise|σ) can be
evaluated with a one-sided Gaussian pdf

p(noise|σ) =
√

2
σ
√

π
exp (− 1

σ
) (11)

at location 2σ, i.e. line segments meeting non of the vk

within 2σ are more likely to be noisy. The likelihood
p(li|vk, σ) can be expanded to

p(li|vk, σ) = p(ai|vk, σ)p(bi|vk, σ), (12)

because ai and bi are independent from each other.
p(ai|vk, σ) and p(bi|vk, σ) are one-sided Gaussian pdfs

p(ai|vk, σ) =
√

2
σ
√

π
exp (

−d2(ai, āi)
2σ2

), (13)

p(bi|vk, σ) =
√

2
σ
√

π
exp (

−d2(bi, b̄i)
2σ2

), (14)
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where d2(ai, āi) and d2(bi, b̄i) are the squared distances be-
tween the end points ai, āi and bi, b̄i respectively. Now,
the online EM algorithm tries to find optimal estimates of
v1, . . . , vm and Pr(v1), . . . ,Pr(vm) under the given li and
a given σ.

4.2. E-step

The goal of the E-step is to compute the posterior mem-
bership probability

qki = Pr(vk|li) =
p(li|vk, σ) Pr(vk)

p(li)
, (15)

that li meets vk, given the prior probabilities Pr(vk) and
the likelihood function p(li|vk, σ). p(li) is a normalization
factor to ensure

m∑
k=1

qki + Pr(li|noise) = 1, (16)

and can be written as

p(li) =
m∑

k=1

p(li|vk, σ) Pr(vk) + p(noise|σ) Pr(noise).

(17)
Pr(li|noise) is the probability that line segment li is noisy
and can be computed from equation 16. The E-step gives
us the best guess of the membership qki of unknown line
segments li to the current vanishing point estimates vk with
prior probabilities Pr(vk). If some li do not meet any of the
vk, they are expected to be noisy line segments.

4.3. M-step

In the M-step the current vanishing point estimates vk

are re-estimated using the previously computed member-
ship probabilities. This is done by maximizing the expected
log-likelihood function

max
v∗

k

J(v∗
k) = qki log p(li|v∗

k, σ) (18)

with respect to new estimates of vanishing points v∗
k.

Section 4.1 showed that p(li|v∗
k, σ) and consequently

log p(li|v∗
k, σ) are likelihood functions based on geometric

error distances between li and its MLE with respect to v∗
k.

Unfortunately, no explicit and optimal estimate of v∗
k can

be given, because J(v∗
k) is a non-linear function. However,

iterative, numerical algorithms like Levenberg-Marquardt
can be used to find optimal estimates of v∗

k. We refer to
Liebowitz [12, 3.6, p.63-69], who shows in all details the
MLE of line segment intersections.

Now, the old estimate vt−1
k is adapted in terms of

weighted-means with the new estimates v∗
k by

vt
k = (1 − λ)vt−1

k + λv∗
k, (19)

where λ is a constant learning rate.
Similarly, the prior probabilities are adapted by

Pr(vk)t = (1 − λ) Pr(vk)t−1 + λ

∑L
i=1 qki

L
(20)

with the number of line segments L.

4.4. Update and calibration

Line segments can disappear or line segments can be de-
tected during the adaptation, because of changes in illumi-
nation or changes in the structure of the scene. Therefore,
it is a good idea to keep the best vanishing point estimates
so far or to update worse estimates. The same is true for
the internal camera parameters which are estimated from
the vanishing points. Let v̂k be the vanishing points which
should be used for online calibration. In the beginning, each
v̂k is set to v0

k. We suggest to use the uncertainty in the en-
tries of v̂k and vt

k to decide about an update. As mentioned
in section 3.1, a first order error analysis provides variance
co-variance matrices ∆v̂k

and ∆vt
k
. The elements of ∆vt

k

will be smaller, if more and longer line segments are used
to compute vt

k. Contrary, if the angle between two line seg-
ments intersecting in a vanishing point is small, the uncer-
tainty of the vanishing point will be large. Otherwise, if the
angle between two line segments is large (< π

2 ) the uncer-
tainty of their intersection point is relatively smaller. Look
at Liebowitz [12, 3.6, p.72-77] for a detailed discussion of
the uncertainty of intersection points.

As a measurement of the uncertainty of v̂k and vt
k we

use the trace of their variance co-variance matrices. If
trace(∆vt

k
) < trace(∆v̂k

), v̂k will be updated with vt
k.

Otherwise, no update happens.
The calibration can fail during the EM iterations. If van-

ishing points lie far apart of the image, the Cholesky de-
composition may fail, because of the bad conditioning of
ω. This degenerate case can be avoided by slightly rotating
the camera. If the camera is suddenly rotated, the current
vanishing point estimates will no longer be valid. This situ-
ation can easily happen during a maintenance of the camera,
where e.g. the camera is cleaned. If slightly wrong line seg-
ments appear in the image, the online EM algorithm will
update the vanishing points with invalid optimal estimates.
For example, a new object appears in the world scene and its
alignment to the current directions varies slightly to the di-
rections of objects seen so far. In all cases, the initialization
method should be re-started.

5. Experiments and results

In all experiments we set σ to 0.25pixel, and ε to 0.1.
λ was set to 0.01. Each line segment was at least 15pixels
long.
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First we tested the initialization method in a broad range
of man-made world scenes and it worked successfully in
world scenes like public places, corridors and buildings. For
example, figure 4(a) shows a public place next to a metro
station. The image was taken with a Lumenera 125C and a
Tamron lens with a focal length of 3731.3 pixel. The camera
was successfully calibrated with three detected vanishing
points in the first iteration. To prove these results qualita-
tively, an overhead view of the ground plane was generated
with the vanishing point estimates. The origin of the world
coordinate system was imaged to the principal point esti-
mate. Figure 4(b) shows a satisfying metric rectification of
the ground plane.

Another successful initialization is shown in figure 5(a)
and 5(b). The scene is taken from the Tau-dance data set and
shows view 1. Figure 1 shows a successful initialization and
refinement on images of the PETS 2001 data set.

In the next experiment we demonstrate the advantages
of the online behavior. Figure 6(a) shows our office taken
with a Logitech QuickCam Pro4000. The ceiling light in
the right upper corner of the image is on. The light hides
important edge information. Figure 6(b) shows an image,
300 image frames later. The light is now off, also the door
is shut. The edge information is now apparent. Figure 5
shows the adaptation of the internal camera parameters. It
can be seen that new apparent line segments can improve
the calibration of the internal camera parameters. Table 1
shows the internal camera parameter estimates in detail.

6. Conclusion

We showed how to auto-calibrate a camera in man-made
environments. The online behavior of the initialization
method and the successive refinement method showed ad-
vantages in contrast to existing approaches. To take new
line segment information into account can significantly im-
prove the estimation of the internal camera parameters. To
test the focal length estimate with the focal length of the
lens makes that the estimates are plausible. One improve-
ment for the future could be to use gradient information di-
rectly instead of line segments. Our future work will con-
centrate on using the vanishing points and the calibration to
compute the fundamental matrix between two slightly over-
lapping fields of view.
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(a) Public place

(b) Overhead view

Figure 4. Qualitative analysis of the initializa-
tion. (a) shows a public place close to a metro
station. All detected line segments are drawn
in white color. (b) shows the generated over-
head view.
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(a) Tau-dance scene, view 1

(b) Overhead view

Figure 5. Qualitative analysis of the initializa-
tion. (a) shows the view of camera 1. All
detected line segments are drawn in white
color. (b) shows the generated overhead view
within the black rectangle drawn in (a).

(a) Light on

(b) Light off

Figure 6. Illumination experiment at the of-
fice. (a) shows an image frame under bad
illumination conditions. Consider the up-
per, right corner where much illumination
is present caused by the ceiling light. All
detected line segments are drawn in white
color. (b) shows the same scene after ac-
quiring 300 new image frames. The lamp was
turned off and many more line segments are
suddenly present. Note that the door was
also shut.
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1 [pixel] variances and co-variances [pixel]
f 355.6 9079.4 0.0 9079.4 -2311.2 -5954.4
k -0.0 0.0 0.0 0.0 0.0 -0.0
rf 355.6 9079.4 0.0 9079.4 -2311.2 -5954.4
u0 132.7 -2311.2 0.0 -2311.2 2427.5 1639.1
v0 129.1 -5954.4 -0.0 -5954.4 1639.1 4111.8
300 [pixel] variances and co-variances [pixel]
f 382.0 128.3 0.0 128.3 -45.4 -90.1
k 0.0 0.0 0.0 0.0 -0.0 -0.0
rf 382.0 128.3 0.0 128.3 -45.4 -90.1
u0 127.6 -45.4 0.0 -45.4 51.4 33.1
v0 121.3 -90.1 -0.0 33.1 33.1 70.7
600 [pixel] variances and co-variances [pixel]
f 390.0 94.4 0.0 94.4 -31.1 -65.5
k 0.0 0.0 0.0 0.0 -0.0 -0.0
rf 390.0 94.4 0.0 94.4 -31.1 -65.5
u0 154.9 -31.1 0.0 -31.1 25.0 21.4
v0 118.2 -65.5 -0.0 -65.5 21.4 50.2

Table 1. Camera calibration results of the of-
fice scene. The ground truth for comparison:
f = 399.5, k = 0, rf = 399.8, u0 = 162.3, v0 =
120.7. The second column shows the internal
camera parameter estimates after 1, 300 and
600 iterations of the calibration. Columns 3-
7 show the variances and co-variances of the
estimates in column 1. Note the improvement
of these uncertainties caused by the averag-
ing in the refinement. After image frame 300
the improvement is also caused by the pres-
ence of new line segments.
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Matthias Függer for their helpful discussions.
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