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Abstract. In this paper, we propose a novel, completely automated method for 
the segmentation of lymphatic cell nuclei represented in microscopic specimen 
images. Actually, segmenting cell nuclei is the first, necessary step for develop-
ing an automated application for the early diagnostics of lymphatic system tu-
mors. The proposed method follows a two-step approach to, firstly, find the nu-
clei and, then, to refine the segmentation by means of a neural model, able to 
localize the borders of each nucleus. Experimental results have shown the fea-
sibility of the method. 

1   Introduction 

A great deal of research has concerned, in the last years, the development of auto-
mated systems for the early diagnosis of lymphatic tumors based on the morphologi-
cal analysis of blood cells in microscopic specimen images. Actually, pathologists 
usually make diagnosis by analyzing the morphology of specimen cells [1, 2]. 

The first and necessary step for automating cell analysis is an accurate segmenta-
tion of the cells themselves, which is, then, followed by the extraction of significant 
morphological parameters. Unfortunately, cell segmentation is usually an ill-posed 
problem: due to poor dye quality, cell boundary could be not well distinguishable and 
parts of the same tissue could be not equally stained; two or more cells could be very 
close to each other or even overlapping; the chromatin distribution inside the cells 
could generate strong computed edges which mislead the segmentation. 

In past years, many segmentation methods have been presented [3, 4]. They in-
clude watersheds [5, 6], region-based [7] and threshold-based methods [8]. The prob-
lem with these methods is that they do not employ any shape information of the cell, 
which can be useful in presence of noise.  

Recently, the application of Active Contours has been widely investigated for cell 
segmentation [9, 10]. However, such methods require an initialization of the snake, 



making the segmentation not completely automated. Moreover, having to select 
which cell the snake should be apply to, much information regarding all the cells 
represented in the images is lost. 

Other contour-based methods include Active Shape Models (ASM) [11], Active 
Appearance Models (AAM) [12] and variational deformable models (Strings) [13]. In 
the first two cases, a boundary model and its allowed variations are learned from a set 
of example boundaries and represented by a set of labeled points, encoding only 
shape information in ASM, also image features in AAM. The Strings method differs 
from the previous ones in adopting a continuous instead of discrete boundary repre-
sentation, together with a multiple features description, giving place to a multivariate 
curve representation in functional space (instead of a point representation in vector 
space). All these methods require initialization and allow modeling only the variation 
seen in the training set of boundary examples. 

The method we propose in this paper has the main characteristic to be completely 
automated. Moreover, it is suitable to segment all the cells contained in the images, 
allowing to extract information not only from the malignant ones. 

Following a two-step approach, images are first clustered, in order to perform a 
rough segmentation and localize the cells. In a second processing step, an Artificial 
Neural Network (ANN) is applied to the image portions containing the localized cell 
for individuating cell borders. 

Such an approach assures a high level of robustness, because the ANN performs a 
classification of the image and then it can distinguish among different kinds of struc-
tures, e.g. cell nucleus, cytoplasm, background, artifacts and so forth. 

2   The Fuzzy-Neural Segmentation 

Microscopic cell images are acquired as footprints of lymphoid tissue stained accord-
ing to the Romanovsky-Giemsa technique and digitized as color images. 

Each image I contains a number, say n, of cells which are constituted by the inter-
nal body – the nucleus –, which is the structure of interest to be segmented, and the 
cytoplasm. Due to the staining procedure, artifacts can be present in the images, as 
well as not perfectly stained cells that can be then considered as added noise.  

The proposed method is suitable to detect nuclei borders and consists in applying 
to each image I a two-stage procedure as follows: 

 
1. Cell dislocation detection: a cluster analysis, based on the fuzzy c-means 

algorithm, is applied to identify and label homogeneous regions in the 
image. The clustered regions are then used to divide the entire image in 
disjoint sub-parts for further processing (image partition). 

2. Cells contours extraction: from each image partition relevant features are 
extracted and a dedicated ANN is used to complete the segmentation by 
identifying the contours of each cell. 

 
A sketch of the method is shown in Fig. 1. 
 



  
 
 
 
 
 
 
 
 
 
 
 

Cells Dislocation  
Detection 

Cluster Analysis 

Image Partition 

Cells Contours 
 Extraction 

Features  
Extraction 

ANN for contour 
identification 

Fig. 1. The two-step method for cell segmentation 

In the following, each step is described in more details. 

2.1   Cells Dislocation Detection  

In order to individuate how cells are dislocated in the microscopic images, a fuzzy 
cluster analysis is performed and each image is partitioned in disjoint parts for next 
step elaboration. 

 
Cluster Analysis.  Homogeneous image regions are labelled using an unsupervised 
clustering method, based on the fuzzy c-means algorithm (FCM) [14]. This algorithm 
groups a set of data in a predefined number of classes so as to iteratively minimize a 
criterion function, namely the sum-of-squared-distance from region centroids, 
weighted by a cluster membership function. A membership grade p∈[0,1] is associ-
ated to each element of the data set, describing its probability to belong to a particular 
cluster. 

For each cell image I, a features vector  
 

(I0(x), I1(x), I2(x),…, Iq(x)) 
 
is computed for any pixel x, considering I(x) as a vector of the three color component  
I(x)=(r,g,b). Then I0(x) = I, and for k = 1,…,q, Ik(x) = I∗Γk(x), where Γk  is a Gaussian 
filter with σ = k. In this way, we obtain a data set D = {v1, v2, …, vm} where each vh, 
h=1,…,m is a vector in ℜp representing image elements at different resolutions.  

Let Ucm be a set of real c × m matrices, with c being an integer, 2 ≤ c < m; the 
fuzzy c-partition space for D is, then, the set: 
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where uih is the membership value of vh in cluster i (i = 1,…,c). 



By applying FCM, an optimal fuzzy c-partition and corresponding prototypes are 
found minimizing the objective function: 
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where Λ = (λ1, λ2,…, λc) is a matrix of unknown cluster centers λi ∈ ℜp, ||⋅|| is any 
norm, e.g. the Euclidean norm, expressing the similarity between each data vector vh 
and the center λi, and the weighting exponent η ∈ [0,∞) is a constant that influences 
the membership values. 

Fuzzy partition is carried out through an iterative minimization of (2), calculating 
the cluster centers at each iteration t = 1,2,… as: 
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and updating the membership values as: 
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The iterative process stops when |U(t+1)-U(t)| follows under a certain threshold or 
the maximum number of iterations is reached. 

Applying the FCM on the cell images induces a partition of each slide into a set 
P={R1,R2,…} of disjoint connected regions R, where the indices 1,2,… are region 
labels. In other words, by clustering, we obtain a rough segmentation which can be 
refined reducing the computation by the following step of image partitioning. 

 
Image Partitioning. Once clustered the image, the convex hull of each connected 
region is calculated in order to delimitate the largest image portion (convex image) 
containing the corresponding connected region.  

Starting from the convex hull, an image partition is extracted slightly enlarged in 
both directions the convex image. Such partition contains what the FCM has classi-
fied as a unique cell. However, the contour of the clustered region can be inaccurate, 
including, for instance, the cytoplasm; moreover, it can happen that two very closed 
or touching cells are clustered as a unique region. For these reasons, it is necessary to 
refine the clusterization in a further step. 

2.2 Cells Contour Extraction 

In order to detect the exact cell contour, from each image partition, a set of features is 
extracted and classified by a dedicated ANN. 



Features Extraction. Analyzing the properties of cell images and of the similar cells, 
the following vector of features ℑ(x) is computed for characterizing each pixel x of 
the segmented image partition:  
 

 Color values: I(x) = (r,g,b); 
 Mean color value: M(x) = (Mr, Mg, Mb) computed applying an average fil-

ter F(x), i.e. M(x) = I(x) ∗F(x); 
 Gradient norm: ||∇I(x)|| and its mean, computed along the three color 

components;  
 Radial gradient: Grt(x), defined as the gradient component in the radial 

direction  from the center of the connected region; r̂
 Membership value to the clustered region: ui(x), where i is the cluster in-

dex considered as a cell in the image partition. 
 

ANN for contours identification. The vectors of the extracted features ℑ(x) are 
processed by a dedicated ANN. It consists in a Multilayer Perceptron, trained accord-
ing to the Error Back-Propagation (EBP) algorithm [15] to recognize five different 
classes. At present, to resolve ambiguity in case of touching cells and let the network 
learn and generalize better, five pixel classes are selected: 

1. Cell border 
2. Cell internal body 
3. Cytoplasm 
4. Background 
5. Artifact 

Let oj(ℑ(x)) be the answer of the output units of the network when the features 
vector ℑ(x) is being processed; then, the pixel membership to one of the above men-
tioned classes can be computed as  

Φ(x) = argmaxj=1,…,5(oj(ℑ(x))) . (5) 

A set of pre-classified images has been used to train the network, using the Resil-
ient Back-Propagation [16] version of the EBP algorithm. Once defined the desired 
ψp output for each input vector of the training set TS = {ℑp(x)}, the cost function 
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where op = (o1,o2,…,oj) is the output vector of the network, is minimized iteratively 
computing the weight update at each iteration step t as follows: 
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where wij is the weight between the network units i and j, and ∆ij is the amount of 
weight change which, starting from a chosen value ∆0, varies at each step t according 
to the following equation: 
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where 0 < ε- < 1 < ε+ are parameters used to regulate weight modifications. 
The final result of this step is discussed in the following section. 

3   Results 

Footprints of lymphoid tissues were Romanovsky-Giemsa stained and digitized with 
digital camera mounted on Leica DMRB microscope using PlanApo 100/1.3 objec-
tive. The equivalent size of a pixel was 0,0036 µ2; 24-bit color images were stored in 
TIFF format of dimensions 1200 × 1792. A total number of 800 microscopic images 
were considered, with an average number of 20 cells for each. An example of a mi-
croscopic cell image and its three color components is reported in Fig. 2. 

The cluster analysis was designed to be performed on the features vectors (I0(x), 
I1(x), I2(x),…, Iq(x)) with q = 5, but, among such components, only I3(x) and I5(x) 
were considered relevant. The input vectors represented in the form of color images 
are shown in Fig. 3.  
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Fig. 2. An example of microscopic cell image: the original image and the three color compo-
nents. 

 

     
Fig. 3. An example of the three-component feature vector used for clustering: from left to right, 
original, σ = 3 and σ = 5. 

 
 
 
The same feature vector for each of the color components of the image is reported 

in Fig. 4. 
The FCM algorithm is applied to divide image pixels into two clusters correspond-

ing to cell and background. A filling operation is performed to eliminate little holes, 
while clustered regions of negligible area are deleted. An example of the clustering 
results is reported in Fig. 5. 
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Fig. 4. An example of the feature vector with the original values I0(x) and I3(x) and I5(x) for 
each of the three color components. 

 

   
Fig. 5. Example of the clustering results: rough clustered image (left), clustered image after a 
filling operation and after deletion of regions of negligible area (right). 

Examples of image partitions extracted for detecting the exact borders of a cell are 
shown in Fig. 6. 

 



  

  

  

Fig. 6.  Image partitions containing the cells to be segmented. 

    
From each partition, the set of the mentioned features is extracted. To illustrate the 

significance of such set, Fig. 7 shows an example of the gradient regarding the green 
component. 

The set of 800 images was partitioned in (i) a sub-set of 300 images, used for train-
ing, and (ii) a sub-set of the remaining 500 images used for the testing phase. A semi-
automatic segmentation was performed for the training set, consisting in a classifica-
tion of images according to the different classes of pixels. 

Different architectures were tested, varying the number of the hidden units: the 
best performance was achieved with only one hidden layer of 20 units. An example of 
the segmentation results is illustrated in Fig. 8, where the entire classification results 
are reported too. 

 

     
Fig. 7. Example of the computation of the green component gradient along the horizontal axis 
(left), along the vertical axis (middle) and the norm of the same gradient (right). 

4   Discussion and Conclusions 

A two-step method for segmenting microscopic cell images has been presented.    



The first step consists of a fuzzy clustering of images performed to obtain a rough 
segmentation and to detect cell dislocation. In the second step, a dedicated ANN is 
applied to refine the segmentation by discriminating image components, i.e. cell bor-
ders, cell internal body, cytoplasm, background, and artifacts. 

The main features of the proposed method are  
 complete automation of segmentation 
 possibility of extracting all the cells represented in the images  
 robustness due to the ANN application which allows resolving ambi-

guity of closed or touching cells. 
 
An example of the last characteristic is shown in Fig. 9, where it can be seen how 

two cells that are clustered as a unique region by the FCM are well separated by the 
ANN thanks to the individuation of cytoplasm.  
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Fig. 8. Example of segmentation. upper left: original cell image; upper right: results of the 
ANN classification (five classes with different colors); lower left: identified contours of each 
cell; lower right, legenda. 

 
 



                
Fig. 9. Example showing the robustness of the proposed method: (left) rough segmentation 
obtained by FCM that individuates a unique region corresponding to three different cells; 
(right) result of the ANN algorithm where the cells are correctly separated by classifying pixels 
in cell body, cytoplasm and artifact (see Fig. 8 for explanation of colors). 
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