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ABSTRACT

Several methods for automatic classification of utterances into
emotional states have been proposed. However, the reported er-
ror rates are rather high, far behind the word error rates in speech
recognition. Accordingly, there is a constant motivation for per-
formance optimization. In this paper, self-adaptive genetic algo-
rithms are employed to search for the worst performing features
with respect to the probability of correct classification achieved by
the Bayes classifier in a first stage. That is, a genetic algorithm-
based implementation of backward feature selection is proposed.
These features are subsequently excluded from sequential floating
feature selection employing the probability of correct classifica-
tion achieved by the Bayes classifier as criterion. In a second
stage, self-adaptive genetic algorithms are employed to search for
the worst performing utterances with respect to the same criterion.
The sequential application of both stages is demonstrated to im-
prove speech emotion recognition on the Danish Emotional Speech
database.

1. INTRODUCTION

Vocal emotions constitute an important constituent of multimodal
human computer interaction [1, 2]. Quantitative studies of vocal
emotions have had a longer history than quantitative studies of facial
expressions [3]. Several recent surveys are devoted to the analysis
and synthesis of speech emotions from the point of view of pattern
recognition and machine learning as well as psychology [4–7].

One approach for speech emotion analysis classifies utterances
into discrete categories such as anger, happiness, sadness, surprise,
neutral, etc. This is in par with neurophysiological and neuroimag-
ing evidence suggesting that the human brain contains facial ex-
pression recognition detectors specialized for specific discrete emo-
tions [8]. However, behavioral evidence implies that emotion cate-
gories are not entirely discrete and independent, because some emo-
tion types tend to overlap in the sense that some types (e.g. anger
and disgust) are closer than others (e.g. sadness and happiness) in
emotion space. This dichotomy is evident in speech emotion clas-
sification literature, where researchers adopt either the discrete case
[9–12] or work on the continuous arousal-valence space [13,14], to
mention a few.

In machine learning, let the objects be described by a vector of
numerical or nominal features. If the number of features is N, there
are 2N possible feature subsets. Feature selection is a topic at the
cross-section of several disciplines such as pattern recognition and
machine learning, statistics, information theory, and the philoso-
phy of science. It is essentially an optimization problem that in-
volves searching the space of possible feature subsets to find one
subset that is optimal (or near-optimal) with respect to a certain cri-
terion [15–18]. Every feature subset selection algorithm contains
two main parts: (1) the search strategy employed to select the fea-
ture subsets and (2) the evaluation method applied to test their good-
ness and fitness based on some criteria. Search strategies can be
classified into one of the following three categories: (1) optimal,
(2) heuristic, and (3) randomized. Exhaustive search is the most
straightforward approach to optimal feature selection. However,

since the number of possible subsets grows exponentially, exhaus-
tive search becomes impractical for even moderate feature numbers.
The only optimal feature selection method, which avoids the ex-
haustive search is based on the branch and bound algorithm [19].
Sequential forward selection (SFS) and sequential backward selec-
tion (SBS) are two well-known heuristic suboptimal feature selec-
tion schemes. SFS, starting with an empty feature set, selects the
best single feature and then adds it to the feature set. SBS starts
with the entire feature set and at each step drops the feature whose
absence decreases the performance. Combining SFS and SBS gives
birth to plus l-take away r feature selection, which first enlarges
the feature subset by adding l features using SFS and then deletes r
features using SBS. Sequential forward floating search (SFFS) and
sequential backward floating search (SBFS) are generalizations of
the plus l-take away r method, where l and r are determined auto-
matically and updated dynamically [20]. SFFS is found to dominate
among 15 feature selection methods in terms of classification error
and run time on a 2-class, 20-dimensional, multivariate Gaussian
data set [17]. SFFS results are found comparable to those of opti-
mal branch-and-bound algorithm, while requiring less computation
time.

Feature selection can be performed with respect to properties,
such as orthogonality, correlation, mutual information, etc. From
the perspective of the criterion employed, feature selection meth-
ods can be distinguished as either filters or wrappers. Filters are
computationally more efficient than wrapper approaches since they
evaluate the goodness of selected features using criteria that can be
tested quickly (e.g., reducing the correlation or the mutual infor-
mation among features). This, however, could lead to non-optimal
features, especially, when the features depend on the classifier. As a
result, classifier performance might be poor. Wrappers train a clas-
sifier using the selected features and estimate the classification error
using a validation set. Although the latter procedure is slower than
filters, the selected features are usually more discriminative for the
specific classifier [21, 22].

Computational studies of Darwinian evolution and natural selec-
tion have led to numerous models for computer optimization. Evo-
lutionary algorithms have also been used for feature selection [23].
They are random search algorithms. Among them genetic algo-
rithms (GA) comprise a subset of evolutionary algorithms focusing
on the application of selection, mutation, and recombination to a
population of competing problem solutions [24]. Obviously, GAs
are prime candidates for random probabilistic search algorithms
within the context of feature selection [25–28].

In classification, labelled examples induce a model that classi-
fies objects into a finite set of known classes. There are three rea-
sons for subset feature selection in conjunction with classification.
First, irrelevant, non informative features may result in a classifier
which is not robust. This is due to the fact that classification error
does not satisfy monotonicity. Second, a large number of features
implies also a large number of observations to properly design a
classifier. Finally, by eliminating irrelevant features, classification
time and time for data collection can be reduced. Frequently, before
proceeding to speech emotion recognition subset feature selection
is performed [9, 11, 29]. GAs have also been employed for feature



generation in speech emotion recognition [10].
In this paper, we employ self-adaptive GAs to further reduce the

prediction error for speech emotion recognition reported in [9, 12].
Self-adaptive GAs change the probabilities of crossover and mu-
tation during generations based on population diversity [30, 31].
They are employed to search for the worst performing features with
respect to the probability of correct classification achieved by the
Bayes classifier in a first stage. That is, a genetic algorithm-based
implementation of BFS is proposed. These features are subse-
quently excluded from sequential floating feature selection employ-
ing the probability of correct classification achieved by the Bayes
classifier as criterion. In a second stage, self-adaptive GAs are em-
ployed to search for the worst performing utterances with respect
to the same criterion. The sequential application of both stages is
demonstrated to improve speech emotion recognition on the Danish
Emotional Speech database [32].

In GA literature, a binary string codes the chromosomes (i.e. fea-
tures or utterances in this paper). In this binary coding, 1 implies
that the feature/utterance is active and 0 implies the opposite. In this
paper, another coding is employed that codes the location of active
features/utterances. That is, integer values are used, which refer to
the location of the worst features/utterances that should be excluded
from further consideration. Definitely, the number of the worst fea-
tures are much less than the best ones. Therefore, instead of having
a lengthy binary stream, we have a very short integer stream that
can easily be interpreted.

The outline of the paper is as follows. Section 2 briefly describes
GAs. The proposed method is outlined in Section 3. Experimental
results are demonstrated in Section 4 and conclusions are drawn in
Section 5.

2. GENETIC ALGORITHMS

In this Section, the operators of the self-adaptive GAs are briefly
described. In the following, genes refer to integer-valued elements
of chromosomes (i.e. strings of genes encoding individuals). In-
stead of searching for best genes, we are interested in seeking the
worst ones. An integer matrix P of dimensions Np×Nw is defined
whose element Pi j codes the feature index of the jth worst gene of
the ith individual (chromosome). Pi j admits an integer value in the
range [1,N], where N is the number of features in the first stage or
the number of utterances in the second stage. Np and Nw are prede-
fined.

Let us define the notion of population diversity as the normalized
square root of the sum of differences between any two distinct rows
of the population matrix, i.e.

D=
2

Np (Np−1)

Np−1

∑
i=1

Np

∑
j=i+1

√
(pi−p j)(pi−p j)T (1)

where pi is a row vector that represents the ith chromosome. To
avoid misunderstandings, inner products are employed in (1).

2.1 Initial population

In general, the initial population is generated randomly. To do so,
a uniform random number generator fills in P with integers in the
desired range. Pi j are checked for uniqueness inside each chromo-
some. Typical values of Np could be 50, 100, 200. The default value
of Np is 100. We have also made experiments with Np = 50,200
without noticing any significant difference. Let Niter denote the
number of iterations. Niter typically admits values 50, 100, and 200.
However, the larger Niter is, the higher the chance to find the op-
timal value is, but at the expense of more computational time. If
Niter < 50, then there will be no reliable result. If self-adaptive GAs
are not employed, it is more probable to get a null diversity when
Niter is large. The latter happens because, the dominant chromo-
some most probably fills in all rows of P after some iterations.

2.2 Selection

The selection strategy is cross generational and differs from tradi-
tional selection. In traditional selection, the fittest genes have more
chance to survive. However, in cross generational selection, addi-
tional random chromosomes are appended in P. The number of
new chromosomes could be Np or a fraction of Np. In our exper-
iments another Np chromosomes are randomly generated, and Np
out of the 2Np worst individuals with respect to the fitness criterion
are given a chance to survive in the next generations.

The evaluation procedure for the fitness of population is the re-
peated ψ-fold cross validation (i.e. [33]. We preserve the Np worst
chromosomes for the next operations.

2.3 Crossover

We apply a simple multi-point crossover operator [34]. The num-
ber of points and also their positions are determined randomly for
any pair of candidate parents for crossover. The probability of the
crossover is determined by the status of population diversity. We
call it self-adaptive crossover.

2.4 Mutation

A single-point binary mutation at point k (i.e., the kth bit is toggled)
is performed [34]. The probability of mutation is also determined
by the population diversity. We call it self-adaptive mutation. The
choice of the crossover rate is not critical compared to the probabil-
ity of mutation. A large value of the probability of mutation will not
allow for optimizing the fitness function and the GA will perform
a random search. On the contrary, a small value will not allow the
search to escape from local minima.

3. THE PROPOSED METHOD

The outline of the proposed method is as follows.
1. Generate the matrix P of size Np×Nw, for Np = 100. For fea-

ture trimming, Nw may vary from 1 to Nf , where Nf denotes
the number of the features. In the experiments for feature trim-
ming reported in Section 4, Nw = 1. For utterance trimming,
Nw ∈ {1, . . . ,Nu}, where Nu denotes the number of the utter-
ances. In the experiments for utterance trimming reported in
Section 4, Nw = 3.

2. Assure that there are no repetitions inside each row as well as
between rows.

3. Evaluate the fitness of the initial population.
4. Repeat the following steps, until all population chromosomes

have been examined (i.e. the maximum generation is reached).
Also control the diversity of the population. If it reaches 0, then
quit the loop.

5. Start a loop. Generate another Np chromosomes in the selection
stage and attach them to the previous population. Then, evaluate
their fitness. Select the worst Np chromosomes.

6. Calculate the diversity of the population and select probabilities
of the crossover and mutation operators. If the diversity is more
than a threshold, then assign a minimum value to both probabil-
ities (e.g. 0.5 to crossover and 0.01 to mutation). Let Tmin and
Tmax define two thresholds. If D< Tmin, then increase the prob-
abilities of crossover and mutation. If D > Tmax, then decrease
them. Otherwise, don’t modify them. In our experiments, Tmin
and Tmax were defined as 0.1 and 0.95, respectively.

7. Apply the crossover operation to randomly selected parents
pairs.

8. Apply the mutation to randomly selected parents.
9. Repeat the loop (i.e., jump to step 4).

10. After the GA has converged, then remove the worst fea-
tures/utterances from the dataset.

11. Evaluate the remaining features using the SFFS algorithm with
criterion the probability of correct classification achieved by the
Bayes classifier, when the features are modelled by a multivari-
ate Gaussian probability density function. If some utterances



are excluded then SFFS is applied on the retained utterances and
the probability of correct classification of the Bayes classifier is
estimated by the repeated ψ-fold cross validation.

Fig. 1 illustrates the flowchart of the proposed method.
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Figure 1: Flowchart of the proposed method.

4. EXPERIMENTAL RESULTS

Emotional speech data from Danish Emotion Speech (DES) [32]
are employed. The recordings correspond to speech expressed by
2 male and 2 female actors under 5 emotional states such as anger,
happiness, neutral, sadness, and surprise. The speech data consist
of 2 words, 9 sentences, and 2 paragraphs. Overall, 1160 utterances
have been used. Gender information has not been exploited. The
basis for our experiments is the results reported in [9, 12].

The statistical features employed in this study are grouped in
several classes as is explained in the sequel. Throughout the anal-
ysis following, the features are referenced by their corresponding
indices.
1. Formants features: The set of formants features indexed by 1-

16 is comprised by the statistical properties of the 4 formant
frequency contours. 1. - 4. Mean value of the first, second,
third, and fourth formant 5. - 8. Maximum value of the first,
second, third, and fourth formant 9. - 12. Minimum value of the
first, second, third, and fourth formant 13. - 16. Variance of the
first, second, third, and fourth formant

2. Pitch features: The pitch features indexed by 17-51 are statistics
of the pitch frequency contour. 17. - 21. Maximum, minimum,
mean, median, interquartile range of pitch values. 22. Pitch
existence in the utterance expressed in percentage (0-100%).
23. - 26. Maximum, mean, median, interquartile range of du-
rations for the plateaux at minima. 27. - 29. Mean, median,
interquartile range of pitch values for the plateaux at minima.
30. - 34. Maximum, mean, median, interquartile range, up-
per limit (90%) of durations for the plateaux at maxima. 35.
- 37. Mean, median, interquartile range of the pitch values
within the plateaux at maxima. 38. - 41. Maximum, mean,
median, interquartile range of durations of the rising slopes of
pitch contours. 42. - 44. Mean, median, interquartile range of
the pitch values within the rising slopes of pitch contours. 45.
- 48. Maximum, mean, median, interquartile range of durations
of the falling slopes of pitch contours. 49. - 51. Mean, median,
interquartile range of the pitch values within the falling slopes
of pitch contours.

3. Energy (intensity) features: The energy features indexed by 52-
85 are statistics of the energy contour. 52. - 56. Maximum,
minimum, mean, median, interquartile range of energy values.
57. - 60. Maximum, mean, median, interquartile range of du-
rations for the plateaux at minima. 61. - 63. Mean, median,
interquartile range of energy values for the plateaux at minima.
64. - 68. Maximum, mean, median, interquartile range, upper
limit (90%) of duration for the plateaux at maxima. 69. - 71.
Mean, median, interquartile range of the energy values within
the plateaux at maxima. 72. - 75. Maximum, mean, median,
interquartile range of durations of the rising slopes of energy
contours. 76. - 78. Mean, median, interquartile range of the
energy values within the rising slopes of energy contours 79. -
82. Maximum, mean, median, interquartile range of durations
of the falling slopes of energy contours. 83. - 85. Mean, me-
dian, interquartile range of the energy values within the falling
slopes of energy contours.

4. Spectral features: The spectral features indexed by 86-113 is the
energy content of certain frequency bands divided to the length
of the utterance. 86. - 93. Energy below 250, 600, 1000, 1500,
2100, 2800, 3500, 3950 Hz. 94. - 100. Energy in the frequency
bands 250 - 600, 600 - 1000, 1000 - 1500, 1500 - 2100, 2100
- 2800, 2800 - 3500, 3500 - 3950 Hz. 101. - 106. Energy in
the frequency bands 250 - 1000, 600 - 1500, 1000 - 2100, 1500
- 2800, 2100 - 3500, 2800 - 3950 Hz. 107 - 111. Energy in
the frequency bands 250 - 1500, 600 - 2100, 1000 - 2800, 1500
- 3500, 2100 - 3950 Hz. 112 - 113. Energy ratio between the
frequency bands (3950 - 2100) and (2100 - 0) and between the
frequency bands (2100 - 1000) and (1000 - 0).

Then the following features are discarded: 8, 23-29, 33-34, 41, 48,
57-63, 67, 75, 82, 105. Thus, 90 features out of 113 are retained for
further consideration as in [12].

The following features have been selected as the most discrim-
inating ones by the Bayes classifier using SFFS, when 10% of the
utterances were used for testing and there are 10 repetitions of 10-
fold cross-validation:

1. Feature 52: Maximum of energy values.
2. Feature 21: Interquartile range of pitch values.
3. Feature 17: Maximum of pitch values.
4. Feature 39: Mean duration of the rising slopes of pitch contours.
5. Feature 20: Median of pitch values.

The following 5 features have been selected as the most discrimi-
nating ones by the Bayes classifier, when feature 2 and utterances
1132-1135 are excluded based on the results of the GA:

1. Feature 53: Minimum of energy values.
2. Feature 21: Interquartile range of pitch values.
3. Feature 113: Energy ratio between the frequency bands (2100 -

1000) and (1000 - 0).
4. Feature 39: Mean duration of the rising slopes of pitch contours.
5. Feature 1: Mean value of the first formant.



We have run classical, adaptive, and self-adaptive GAs to in-
vestigate the possibility of improving speech emotion recognition
by excluding the worst performing features, before applying SFFS.
Among them, the results for self-adaptive were found to be promis-
ing.

Fig. 2 illustrates how well the self-adaptive GA controls the di-
versity of the population along generations in one of the experi-
ments within Niter = 50 iterations.
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Figure 2: Linearly scaled diversity in the range [0, 1] along genera-
tions.

Table 1 presents confusion matrix from subjective human evalu-
ation [32]. The utterances are correctly identified with an average
rate of 67%. “Surprise” and “Happiness” are often confused as well
as “Neutral” and “Sadness”.

Table 1: Confusion matrix from subjective human evaluation [32].

Correctly classified responses (%)
Stimuli Anger Happ. Neutral Sadness Surprise
Anger 75.1 4.5 10.2 1.7 8.5
Happiness 3.8 56.4 8.3 1.7 29.8
Neutral 4.8 0.1 60.8 31.7 2.6
Sadness 0.3 0.1 12.6 85.2 1.8
Surprise 1.3 28.7 10.0 1.0 59.1
Total error
rate (%)

32.7

Table 2 shows the confusion matrix for speech emotion recogni-
tion using the Bayes classifier with SFFS [9] for 10 cross-validation
repetitions.

Table 2: Confusion matrix for the Bayes classifier with SFFS when
cross-validation repetitions are limited to 10 [9].

Correctly classified responses (%)
Stimuli Anger Happ. Neutral Sadness Surprise
Anger 37.95 20.73 11.69 11.22 18.41
Happiness 16.58 32.83 13.50 11.56 25.53
Neutral 5.97 5.67 45.25 35.62 7.49
Sadness 2.76 4.34 23.29 63.01 6.60
Surprise 14.12 19.90 7.28 12.81 45.89
Total error
rate (%)

55.02

The total error rate (i.e., the average prediction error) obtained
when features are excluded with and without excluding utterances
is plotted in Fig. 3. The events in Fig. 3 are decoded as follows.

Event 1: Total error rate without applying the proposed method.
Event 2: Total error rate with the proposed method when feature

112 is excluded.
Event 3: Total error rate with the proposed method when feature

111 is excluded.
Event 4: Total error rate with the proposed method when feature

104 is excluded.
Event 5: Total error rate with the proposed method when feature 2

is excluded.
Event 6: Total error rate with the proposed method when utter-

ances 1132-1135 but no feature are excluded.
Event 7: Total error rate with the proposed method when utter-

ances 1132-1135 and feature 112 are excluded.
Event 8: Total error rate with the proposed method when utter-

ances 1132-1135 and feature 111 are excluded.
Event 9: Total error rate with the proposed method when utter-

ances 1132-1135 and feature 104 are excluded.
Event 10: Total error rate with the proposed method when utter-

ances 1132-1135 and feature 2 are excluded.

1 2 3 4 5 6 7 8 9 10
52

52.5

53

53.5

54

54.5

55

55.5

56

Events

E
rr

o
r 

ra
te

%

Figure 3: Comparison of total error rates.

Table 3 demonstrates the confusion matrix, when utterances
1132-1135 and feature 2 (i.e. the mean value of the second for-
mant) have been excluded before emotional speech recognition. It
is seen that the probability of correct decisions for anger, neutral,
sadness, and surprise is slightly increased. Therefore, the first re-
sults reported are promising, because the proposed algorithm is able
to detect the worst features and the most problematic utterances.

Table 3: Confusion matrix when the mean value of the second for-
mant and utterances 1132-1135 are removed by the GA from sub-
sequent classification.

Correctly classified responses (%)
Stimuli Anger Happ. Neutral Sadness Surprise
Anger 44.52 18.18 10.77 15.00 11.53
Happiness 20.11 30.48 12.96 15.23 21.22
Neutral 4.52 3.63 52.19 34.24 5.42
Sadness 5.10 1.68 19.26 69.43 4.53
Surprise 15.05 16.43 7.70 18.34 42.48
Total error
rate (%)

52.18

5. CONCLUSION AND FUTURE WORK

We have applied self-adaptive GAs to increase the probability of
correct classification in emotional speech recognition when the
Bayes classifier with feature subset selection is used. Future work
will address smoothing of extracted features, before emotional
speech recognition.
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[14] J. Kim, E. André, M. Rehm, T. Vogt, and J. Wagner. Inte-
grating information from speech and physiological signals to
achieve emotional sensitivity. In Proc. 9th European Conf.
Speech Communication and Technology, 2005.

[15] P. A. Devijver and J. Kittler. Pattern Recognition: A Statistical
Approach. Prentice Hall, 1993.

[16] F. J. Ferri, P. Pudil, M. Hatef, and J. Kittler. Comparative
study of techniques for large scale feature selection. In J. E.
Moody, S. J. Hanson, and R. L. Lippmann, editors, Pattern
Recognition in Practice IV, pages 403–413, 1994.

[17] A. K. Jain and D. Zongker. Feature selection: evaluation, ap-

plication, and small sample performance. IEEE Trans. Pattern
Anal., Machine Intell., 19(2):153–158, 1997.

[18] M. Dash and H. Liu. Feature selection for classification. In-
telligent Data Analysis, 1(3):131–156, 1997.

[19] P. Somol, P. Pudil, and J. Kittler. Fast branch & bound al-
gorithms for optimal feature selection. IEEE Trans. Pattern
Anal., Machine Intell., 26(7):900–912, July 2004.

[20] P. Pudil, J. Novovicova, and J. Kittler. Floating search methods
in feature selection. Pattern Recognition Letters, 15:1119–
1125, 1994.

[21] G. John, R. Kohavi, and K. Phleger. Irrelevant features and the
feature subset problem. In W. W. Cohen and H. Hirsh, editors,
Proc. 11th Int. Conf. Machine Learning, pages 121–129. San
Francisco, CA, Morgan Kaufmann, 1994.

[22] R. Kohavi and G. H. John. Wrappers for feature subset selec-
tion. Artificial Intelligence, 97(1-2):273–324, 1997.

[23] W. Siedlecki and J. Sklansky. A note on genetic algorithm
for large-scale feature selection. Pattern Recognition Letters,
10:335–347, 1989.

[24] D. Goldberg, editor. Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning. Addison Wesley, Reading, MA,
1989.

[25] M. L. Raymer, W. F. Punch, E. D. Goodman, L. A. Kuhn, and
A. K. Jain. Dimensionality reduction using genetic algorithms.
IEEE Trans. Evolutionary Computation, 4(2):164–171, 2000.

[26] Z. Sun, G. Bebis, and R. Miller. Object detection using feature
subset selection. Pattern Recognition, 37:2165–2176, 2004.

[27] D. P. Muni, N. R. Pal, and J. Das. Genetic programming for
simultaneous feature selection and classifier design. IEEE
Trans. Systems, Man & Cybernetics-Part B: Cybernetics,
36(1):106–117, February 2006.

[28] E. Zio, P. Baraldi, and N. Pedroni. Selecting features for nu-
clear transients classification by means of genetic algorithms.
IEEE Trans. Nuclear Science, 53(3):1479–1493, June 2006.

[29] J. Wagner, J. Kim, and E. André. From physiological signals
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