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Abstract—In this paper, adaptive genetic algorithms are em- strategy employed to select the feature subsets and (2) the
ployed to search for the worst performing features with respect evaluation method applied to test their goodness and fithess

to the probability of correct classification achieved by the Bayes 15564 on some criteria. Search strategies can be classified
classifier in a first stage. These features are subsequently excluded.

from sequential floating feature selection that employs the prob- Into pn_e of the foIIOWing_three Categories: @) op.timal, @)
ability of correct classification of the Bayes classifier as criterion. heuristic, and (3) randomized. Exhaustive search is the most

In a second stage, adaptive genetic algorithms search for the straightforward approach to optimal feature selection. How-
worst performing utterances with respect to the same criterion. ever, since the number of possible subsets grows exponentially,
The sequential application of both stages is demonstrated 10 gyna stive search becomes impractical even for moderate
improve speech emotion recognition on the Danish Emotional . -
Speech database. fegture numbers. The only optimal fegture selection method,
which avoids the exhaustive search is based on the branch
|. INTRODUCTION and bound algorithm [17]. Sequential forward selection (SFS)
Vocal emotions form an important part of multimodabnd sequential backward selection (SBS) are two well-known
human computer interaction [1]. Several recent surveys dreuristic suboptimal feature selection schemes. Combining
devoted to the analysis and synthesis of speech emotions fr8FS and SBS gives birth to plidake awayr feature selec-
the point of view of pattern recognition and machine learniriipn. Sequential forward floating search (SFFS) and sequential
as well as psychology [2], [3]. backward floating search (SBFS) are generalizations of the
In this paper, we build on the earliest ‘discrete’ theoriegglus /-take awayr method, where and r are determined
of emotion (stemming from Darwin’s work in 1872) thatautomatically and updated dynamically [18]. SFFS is found
assumes the existence of a small number of emotions, sticirdominate among 15 feature selection methods in terms of
as happiness, sadness, fear, anger, surprise, and disgustc[dgsification error and run time on a 2-class, 20-dimensional,
These emotions are also terms as basic emotions, i.e. emotionstivariate Gaussian data set [16]. Feature selection can be
that are universal and primitive. On the one hand, suchparformed with respect to properties, such as orthogonality,
theory is in par with neurophysiological and neuroimagingorrelation, mutual information, etc.
evidence suggesting that the human brain contains facial exEvolutionary algorithms are random search algorithms.
pression recognition detectors specialized for specific discrétmong them, genetic algorithms (GAs) comprise a subset
emotions [5]. Fear-specific responses within the amygdalak evolutionary algorithms focusing on the application of
were reported for vocal emotional expressions as well [6election, mutation, and recombination to a population of
However, it is unsettled to which extend exact localizatiooompeting problem solutions [19]. Obviously, GAs are prime
of cerebral activation during comprehension of emotionahndidates for random probabilistic search algorithms within
prosody is linked to specific emotional categories [7]. Othe context of feature selection.
the other hand, behavioral evidence is consistent with someThere are three reasons for subset feature selection in con-
form of lower order dimensional representation of emotiojanction with classification. First, irrelevant, non informative
that reflects subjective aspects of behavior such as positive femtures may result in a classifier which is not robust. This
negative and active vs. passive [5]. The so-called dimensioimaldue to the fact that classification error does not satisfy
approach is another early model for emotion proposed byonotonicity. Second, a large number of features implies also
Wundt in 1874 [8]. This dichotomy is evident in speecla large number of observations to properly design a classifier.
emotion classification literature, where researchers adopt eitR@ally, by eliminating irrelevant features, classification time
the discrete case [9]-[12] or work on the continuous arousalrd time for data collection can be reduced. Frequently, before
valence space [13], [14], to mention a few. proceeding to speech emotion recognition subset feature selec-
Feature selection is essentially an optimization probletion is performed [9], [11], [20]. GAs have also been employed
that involves searching the space of possible feature subdetsfeature generation in speech emotion recognition [10].
to find one subset that is optimal (or near-optimal) with In this paper, we employ adaptive GAs to further reduce
respect to a certain criterion [15], [16]. Every feature substte prediction error for speech emotion recognition reported in
selection algorithm contains two main parts: (1) the sear§®], [12]. Adaptive GAs change the probabilities of crossover



and mutation during generations based on the diversity lifjher the chance to find the optimal value is, but at the
population [21], [22]. They search for the worst performingxpense of more computational time. If adaptive GAs are not
features with respect to the probability of correct classificatimmployed, it is more probable to get a null diversity, when
achieved by the Bayes classifier in a first stage. These featuMg, is large. This is due to, it is most probable to have
are subsequently excluded from sequential floating featulee dominant chromosome to fill all rows & after some
selection employing the probability of correct classificatiorterations.

achieved by the Bayes classifier as criterion. In a second stageThe selection strategy is cross generational and differs from
adaptive GAs are employed to search for the worst performitrgditional selection. In traditional selection, the fittest genes
utterances with respect to the same criterion. The sequenktiale more chance to survive. However, in cross generational
application of both stages is demonstrated to improve speesghection, additional random chromosomes are appended in
emotion recognition on the Danish Emotional Speech databde The number of new chromosomes could bg or a
[23]. fraction of N,. In our experiments anothe¥, chromosomes

In GA literature, a binary string codes the chromosomes (i.ae randomly generated, and tig, out of the 2V, worst
features or utterances here). In this binary coding, 1 implieeromosomes with respect to the fitness criterion are given
that the feature/utterance is active and O implies the opposiiechance to survive in the next generations. The evaluation
In this paper, another coding is employed that codes the [arocedure for the fitness of population is the repeatedld
cation of active features/utterances. That is, integer values aress validated prediction error [24].
used, which index the location of the worst features/utterancesNe apply a simple multi-point crossover operator [25].
that should be excluded from further consideration. Definitelyhe number of points and also their positions are determined
the number of the worst features are much less than the besidomly for any pair of candidate parents for crossover. The
ones. Therefore, instead of having a lengthy binary stream, webability of the crossover is determined by the status of
have a very short integer stream that can easily be interpretgdpulation diversity. We call it adaptive crossover.

The outline of the paper is as follows. Section Il briefly A single-point binary mutation at point (i.e., the kth
describes GAs. The proposed method is outlined in Section Wit is toggled) is performed [25] (integer-binary-integer con-
Experimental results are demonstrated in Section IV awnérsion is considered). The probability of mutation is also
conclusions are drawn in Section V. determined by the status of population diversity. We call it

Il. GENETIC ALGORITHMS adaptive mutation. The choice of the crossover rate is not

In this section, the operators of the adaptive GAs are brieﬁr.tiCaLI co mpared o the .mutation probability. A large value
described. In the following, genes refer to integer-valug mutation probability will not allow the search to focus on

elements of chromosomes (i.e. strings of genes encod g better regions and the GA will perform a random search.

individuals). Instead of searching for the best genes, we WEVET, a ?’”_‘a” value W'." not a“.OW the search to__escape
interested in seeking the worst ones. An integer maif rom I.ocal minima. An optimal choice of the prqbabll|ty of
dimensionsN, x N, is defined whose elemen®;; codes mu.tat|on \.N'.” allow (.BA to explorg the more promising regions,
the feature index of thgth worst gene of theth individual while avoiding getting trapped into local minima.
(chromosome)P;; admits an integer value in the range V], I1l. THE PROPOSED METHOD
where N is the number of features in the first stage or the tha outline of the proposed method is as follows.
number of utterances in the second stadg. and N,, are
predefined.

Let us define thepopulation diversityas the normalized
square root of the sum of differences between any two distinct

rows of the population matrix, i.e.
9 Mol Mo 2) Assure that there are no repetitions inside each row as
D=5 (N, — 1) Z Z \/(pi —pj)pi —p))t (1) well as between rows.
P i=1 j=i+l 3) Evaluate the fitness of the initial population.

wherep; is a row vector that represents tita chromosome. 4) Repeat the following steps, until all population chro-
To avoid misunderstandings, inner products are employed in mosomes have been examined (i.e. the maximum gen-
Q). eration is reached). Also control the diversity of the

In general, the initial population is generated randomly. To  population. If it reaches 0, then quit the loop.
do so, a uniform random number generator fillsEnwith 5) Start a loop. Generate anothéf, chromosomes in
integers in the desired rangg;; are checked for uniqueness the selection stage and attach them to the previous

1) Generate the matri® of size N, x N, for N, =
100. For feature trimming/NV,, may vary from 1 tolVy,
where Ny denotes the number of the features. In the
experiments reported in Section IW,, = 1 for feature
trimming, while N,, = 3 for utterance trimming.

inside each chromosome. Typical values)of could be 50,
100, 200. The default value a¥, is 100. Experiments with

N, = 50, 200 did not yield any significant difference. Let 6)

Nie,r denote the number of iterationd;;., typically admits
values 50, 100, and 200. However, the largég.. is, the

population. Then, evaluate their fitness. Select the worst
N, chromosomes.

Calculate the diversity of the population and select
probabilities of the crossover and mutation operators.
If the diversity is more than a threshold, then assign



a minimum value to both probabilities (e.g. 0.5 ta15-48: Maximum, mean, interquartile range, upper limit (90%)
crossover and 0.01 to mutation). L&t,;, and T,,., of duration for the plateaux at maxima. 49-51: Mean, median,
define two thresholds. ID < Ty, then increase the interquartile range of the energy values within the plateaux at
probabilities of crossover and mutation. If > T,,,,, mMaxima. 52-54: Maximum, mean, median range of durations
then decrease them. Otherwise, do not modify them. &f the rising slopes of energy contours. 55-57: Mean, median,
our experiments] i, andT,,.x Were defined as 0.1 andinterquartile range of the energy values within the rising slopes

0.95, respectively. of energy contours 58-60: Maximum, mean, median range
7) Apply crossover to randomly selected parents pairs. of durations of the falling slopes of energy contours. 61-63:
8) Apply mutation to randomly selected parents. Mean, median, interquartile range of the energy values within
9) Repeat the loop (i.e., jump to step 4). the falling slopes of energy contours.
10) After the GA has converged, then remove the worst Spectral features: The spectral features indexed by 64-90
features/utterances from the dataset. is the energy content of certain frequency bands divided to

11) Evaluate the remaining features using the SFFS alghe length of the utterance. 64-71: Energy below 250, 600,
rithm with criterion the probability of correct classifica-1000, 1500, 2100, 2800, 3500, 3950 Hz. 72-78: Energy in
tion achieved by the Bayes classifier, when the featurthe frequency bands 250 - 600, 600 - 1000, 1000 - 1500,
are modelled by a multivariate Gaussian probability500 - 2100, 2100 - 2800, 2800 - 3500, 3500 - 3950 Hz. 79-
density function. If some utterances are excluded, th&3: Energy in the frequency bands 250 - 1000, 600 - 1500,
SFFS is applied on the retained utterances and the pra@00 - 2100, 1500 - 2800, 2800 - 3950 Hz. 84-88: Energy
ability of correct classification of the Bayes classifier ifn the frequency bands 250 - 1500, 600 - 2100, 1000 - 2800,
estimated by the repeategfold cross validation. 1500 - 3500, 2100 - 3950 Hz. 89-90: Energy ratio between the

frequency bands (3950 - 2100) and (2100 - 0) and between

the frequency bands (2100 - 1000) and (1000 - 0).

Emotional speech data from Danish Emotion Speech (DES)we have run classical and adaptive GAs to investigate

[23] are employed. The recordings correspond to speech exe possibility of improving speech emotion recognition by

pressed by 2 male and 2 female actors under 5 emotional sta{eSluding the worst performing features, before applying

such as anger, happiness, neutral, sadness, and surprise.SHES. Among them, the results for adaptive were found to
speech data consist of 2 words, 9 sentences, and 2 paragragd$romising.

Overall, 1160 utterances have been used. Gender informatiofrig, 1 jllustrates how well the adaptive GA controls the

has not been exploited. The basis for our experiments is #fli@ersity of the population along generations in one of the

results reported in [9], [12]. experiments withinNy., = 50 iterations, compared with
The statistical features employed in this study are groupemssical GAs.

in several classes as is explained in the sequel.

IV. EXPERIMENTAL RESULTS

Formants features: The set of formants features indexed by L ClassicalGA L AdspiveGA
1-15 is comprised by the statistical properties of the 4 formant 09 09 MAM/\A[\/\
frequency contours. 1-4: Mean value of the first, second, third, osll 08
and fourth formant. 5-7: Maximum value of the first, second 07 07

and third formant. 8-11: Minimum value of the first, second,
third, and fourth formant. 12-15. Variance of the first, second,
third, and fourth formant.

Pitch features: The pitch features indexed by 16-39 are
statistics of the pitch frequency contour. 16-20: Maximum,
minimum, mean, median, interquartile range of pitch values. ‘ ‘
21: Pitch existence in the utterance expressed in percentage Y eraion © eraton O
(0-100%). 22-24: Maximum, mean, median of durations fafig. 1. Normalized diversity through generations for classical (left) and
the plateaux at maxima. 25-27: Mean, median, interquartfgartive (right) GAs.
range of the pitch values within the plateaux at maxima. 28-

30: Maximum, mean, median range of durations of the rising Table | presents the confusion matrix from subjective human
slopes of pitch contours. 31-33: Mean, median, interquartévaluation [23]. The utterances are correctly identified with
range of the pitch values within the rising slopes of pitchn average rate of 67%. “Surprise” and “Happiness” are often
contours. 34-36: Maximum, mean, median range of durationsnfused as well as “Neutral” and “Sadness”. Table Il shows
of the falling slopes of pitch contours. 37-39: Mean, mediathe confusion matrix for speech emotion recognition using
interquartile range of the pitch values within the falling slopethe Bayes classifier with SFFS [9] for 30 cross-validation
of pitch contours. repetitions and when 30% of the utterances are used for

Energy (intensity) features: The energy features indexed t®sting. Table 1l demonstrates the confusion matrix for the
40-63 are statistics of the energy contour. 40-44: Maximumesults provided by the proposed method, when utterances
minimum, mean, median, interquartile range of energy valuesl32-1135 and feature 2 (i.e. the mean value of the second
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formant) have been excluded. The cross-validation repetitions
are limited to 30 and 30% of the available utterances are USI%
for testing. It is seen that the probability of correct decision

for anger, neutral, sadness, and surprise is slightly increased.

Therefore, the first results reported are promising, becausd
the algorithm is able to detect the outliers from features ang]
utterances.

TABLE |
CONFUSION MATRIX FROM SUBJECTIVE HUMAN EVALUATION [23].

(6]

Correctly classified responses (%) 7]
Stimuli Anger Happ. Neufral Sadness Surprise
Anger 75.1 4.5 10.2 1.7 8.5
Happiness 3.8 56.4 8.3 1.7 29.8 8]
Neutral 4.8 0.1 60.8 31.7 2.6
Sadness 0.3 0.1 12.6 85.2 1.8 [9]
Surprise 1.3 28.7 10.0 1.0 59.1
Total rate 67.3%
TABLE II (10]
CONFUSION MATRIX FOR THEBAYES CLASSIFIER WITHSFFSWHEN
CROSSVALIDATION REPETITIONS ARE LIMITED TO 30 AND 30%OF THE
UTTERANCES ARE USED FOR TESTING9]. [11]
Correctly classified responses (%)
Stimuli Anger Happ. Neufral Sadness surprise
Anger 41.65 19.28 16.20 11.05 11.82
Happiness| 19.24 3219  18.29 11.04 1924 (12
Neutral 7.28 5.88  47.63 31.09 8.12
Sadness 2.03 1.52 18.32 72.79 5.34
Surprise 22.28 14.40 7.33 14.94 41.05
Total rate 47.06% (13]
TABLE Il [14]
CONFUSION MATRIX WHEN THE ADAPTIVE GA REMOVES THE MEAN
VALUE OF THE SECOND FORMANT AND UTTERANCESL132-1135FROM
SUBSEQUENT CLASSIFICATION [15]
Correctly classified responses (%)
Stimuli Anger Happ. Neutral Sadness  Surprise
Anger 44.40 17.43 14.39 10.09 13.69
Happiness | 18.86  37.73 11.79 12.34 19.28 [16]
Neutral 4.79 5.75 47.81 36.17 5.48
Sadness 2.40 2.40 19.63 71.57 4.00
Surprise 14.62 18.90 10.76 12.69 43.03 [17]
Total rate 48.91%
(18]

V. CONCLUSION AND FUTURE WORK

We have applied an adaptive GA scheme to further optimi[zlé)
the results of feature subset selection algorithms. Adaptil#€]
GAs yield an improvement in correct classification rate. Our
future work would employ more efficient pre-processing tasks
for extracting features, fuse some new features provided By
morphological filtering, and analyze how features affect the
rate of classification of a given emotion. [22]
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