Object Recognition Showcase

Nicu Sebe

University of Amsterdam, The Netherlands

Allan Hanbury, Julian Stoettinger

XC

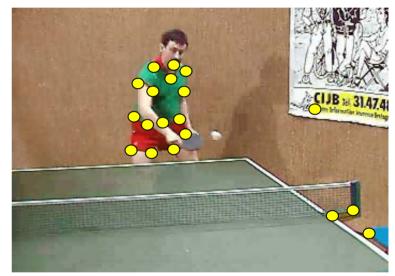
XXXX

TU Wien - PRIP

Jaume Amores

INRIA - IMEDIA

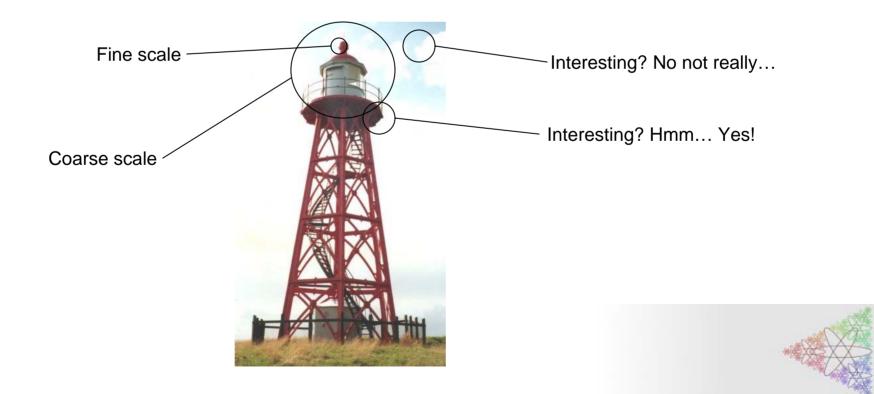
Salient Points



luminambasbdspdiptsints

Salient Points

- Capture visual "interesting" parts of an image
- All points should summarize the image content
 - Multiple scales: coarse ... fine



Salient Points - Usage

- Matching them!
 - Compare detected salient points
 - Detect points in different images
 - Describe these points and compare using a similarity measure
 - Derive relations between images:
 - i.e.: Same scene with different viewpoint; common object(s); etc.
- For example:
 - Object recognition
 - Different scales: Hierarchical object model
 - Object tracking
 - Content Based Image Retrieval (CBIR)

Existing Research

- Finding visual "interesting" points is not easy
 - Mathematical definition?
- Local Image Descriptors
 - Harris [Harris88], Multi-scale point detection [Mikolajczyk01], Local gray value invariants [Schmid97], Edge-based region detector [Tuytelaars04], SUSAN [Smith97], Wavelets [Sebe 03], etc.
- Local Region Descriptors
 - SIFT [Lowe04], shape context [Belongie02], moment invariants [Gool96], N-jet [Koenderink87], etc.

Salient

points

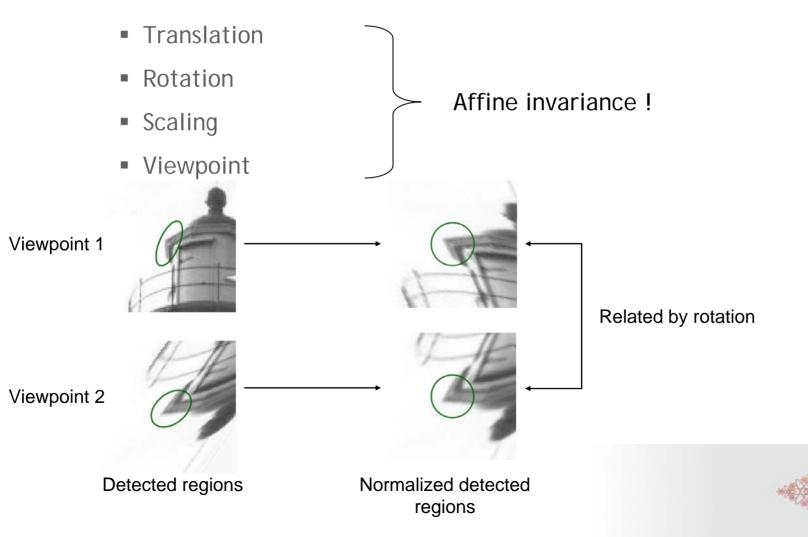
Corners

Existing Research - Issues

- Images are mostly color
 - Why are the existing salient point techniques luminance-based?
 - They typically focus on shape saliency rather than color saliency
 - They cannot distinguish between black-and-white corners (low salient) and red-green corners (high-salient)
- Few existing salient point algorithms that use color [Montesions98][Itti98][Heidenman04]
 - Their results do not differ greatly from the intensity-based methods
 - Difficulties in combining the information available from the color channels
 - Many possible color spaces

Research - Affine invariance

• Detect regions under common transformations



Research - Framework

- Existing method by Mikolajczyk
 - Iterative affine invariant point detector
 - Multi-scale Harris corner detector
 - Laplacian characteristic scale selection
 - Second moment matrix shape determination

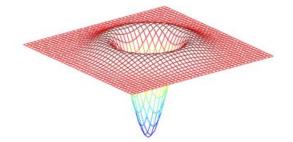
Initial region based on initial scale and location

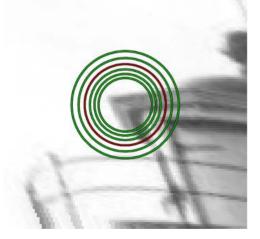
Iteratively adjust scale, position and shape of region

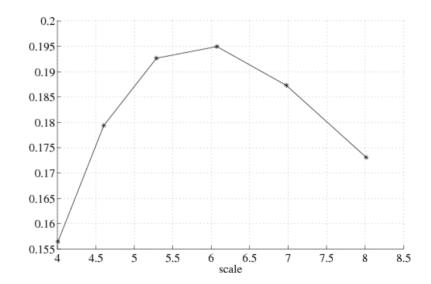
final region

Research - Framework

- Characteristic scale
 - Convolve with multiple Laplacian of Gaussian kernels: scale trace.
 - Select maximum







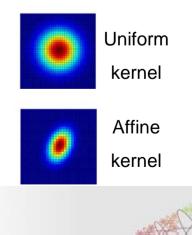
Research - Framework

- Affine deformation
 - Second moment matrix

$$\mu(\mathbf{x},\sigma_I,\sigma_D) = \begin{bmatrix} \mu_{11} & \mu_{12} \\ \mu_{21} & \mu_{22} \end{bmatrix} = \sigma_D^2 g(\sigma_I) \cdot \begin{bmatrix} L_x^2(\mathbf{x},\sigma_D) & L_x L_y(\mathbf{x},\sigma_D) \\ L_x L_y(\mathbf{x},\sigma_D) & L_y^2(\mathbf{x},\sigma_D) \end{bmatrix}$$

- Suppress noise without suppressing the anisotropic shape of a structure.
- Eigenvalues represent two principal curvatures of a point: shape normalization!
- Calculated using (affine) Gaussian kernels
- Affine invariance
 - Detect regions that comply to:

$$\mu(\mathbf{x}, \Sigma_I, \Sigma_D) = M$$
$$\Sigma_I = \sigma_I M^{-1}$$
$$\Sigma_D = \sigma_D M^{-1}$$



- Color Harris (Weijer04)
 - Extend calculation of second moment matrix to color
 - Sum gradients of the channels

color-based points? luminance-based points

What's the problem?

Evaluation Criteria [Schmid98]

- Repeatability
 - Salient point detection should be stable under varying viewing conditions
- Distinctiveness
 - Salient points should focus on events with a low probability of occurrence

Idea: Incorporate color distinctiveness into the design of salient point detectors!!!!!!

- The efficiency of the salient point detection depends on distinctiveness of the extracted points
- At the salient points' positions, local neighborhoods are extracted and described by local image descriptors
- The distinctiveness of a descriptor describes the conciseness of the representation and the discriminative power of the salient points
- The distinctiveness is measured from the information content
- the information content of an event, v, is equal to :

$$I(v) = -\log(p(v))$$

 \bigcirc

- For luminance-based descriptors the information content is measured by the local two-jet of the local structure [Schmid00]
- Due to extra information available in color images, the local one-jet is sufficient

$$v = \begin{pmatrix} R & G & B & R_x & G_x & B_x & R_y & G_y & B_y \end{pmatrix}$$

 Assuming independent probabilities of the 0th order signal and the 1st derivatives, the information content is:

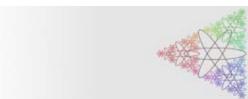
$$I(v) = -\log(p(v)) = -\log(p(\mathbf{f})p(\mathbf{f}_x)p(\mathbf{f}_y)) \qquad \mathbf{f} = (R, G, B)$$

• By adapting the saliency map to focus on rare color derivatives, the color distinctiveness of the detector is improved!!!!

Saliency boosting

- Image derivatives that occur equally often should contribute equally to the saliency measure
- Vectors with equal information content should have equal influence on the saliency map
- Find a transformation *g* for which it holds:

Color Boosting Saliency: $p(\mathbf{f}_x) = p(\mathbf{f}'_x) \leftrightarrow |g(\mathbf{f}_x)| = |g(\mathbf{f}'_x)|$



Invariance \Leftrightarrow distinctiveness

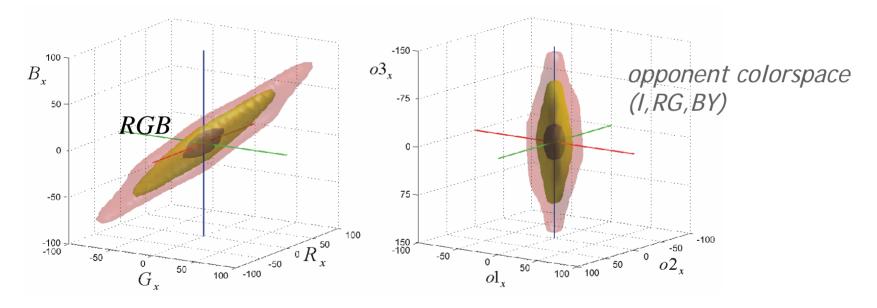
- The channels of f_x are correlated!!! Shadows, shading, and specularities will have a great influence
- There is a need to use different color spaces which will eliminate the influence of these perturbations

shadows shading highlights ill. intensity ill. Colour

	-	-	-	-	-
RGB	-	-	-	-	-
rgb	+	+	-	+	-
Ratios	+	+	-	+	+

Statistics of color images

• The statistics of \mathbf{f}_x are computed by looking at the 40.000 images of the Corel database.



• Isosalient surfaces can be approximated by aligned ellipsoids in decorrelated color spaces.

Statistics of color images

Color Boosting Saliency: $p(\mathbf{f}_x) = p(\mathbf{f'}_x) \leftrightarrow |g(\mathbf{f}_x)| = |g(\mathbf{f'}_x)|$



Statistics of color images

	spherical	opponent	HSI
λ_1	0.85	0.85	0.86
λ_2	0.52	0.52	0.51
λ_3	0.10	0.065	0.066

- Opponent color space was to perform best [vdWeijer04]
 - One of the components is still the intensity (although, with a very low weight, i.e., 0.065)
- Investigate a more invariant color space which has no intensity information anymore: color ratios
- The goal is to analyse the tradeoff between invariance and distinctiveness

Color constancy: Color Ratios

$$m_1 = \frac{R^{x_1} G^{x_2}}{R^{x_2} G^{x_1}}, m_2 = \frac{R^{x_1} B^{x_2}}{R^{x_2} B^{x_1}}, m_3 = \frac{G^{x_1} B^{x_2}}{G^{x_2} B^{x_1}}$$

Taking the natural logarithm of both sides results for m_1 in :

$$\ln m_1 = \ln \left(\frac{R^{x_1} G^{x_2}}{R^{x_2} G^{x_1}} \right) = \ln R^{x_1} + \ln G^{x_2} - \ln R^{x_2} - \ln G^{x_2} =$$

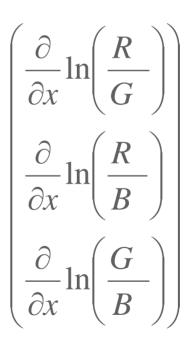
 $\ln R^{x_1} + \ln G^{x_2} - (\ln R^{x_2} + \ln G^{x_2}) =$

$$\ln\left(\frac{R^{x_1}}{G^{x_1}}\right) - \ln\left(\frac{R^{x_2}}{G^{x_2}}\right) = \ln\left(\frac{R}{G}\right)^{x_1} - \ln\left(\frac{R}{G}\right)^{x_2} = \frac{\partial}{\partial x}\ln\left(\frac{R}{G}\right)$$

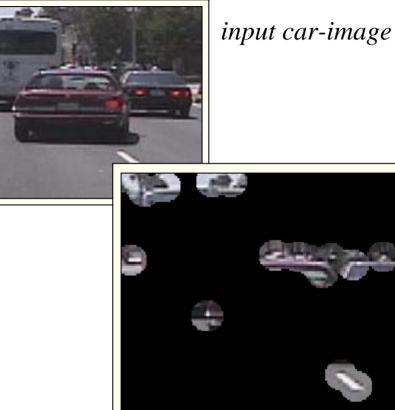
Color constancy: Derivatives

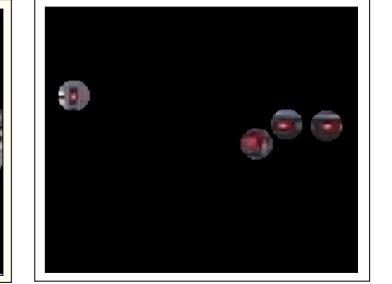
Funt and Finlayson (Mondrian-world) Gevers and Smeulders (3D world)

 $\left(\frac{\partial}{\partial x}\ln R\right)$ $\frac{\partial}{\partial x}\ln G$ $\frac{\partial}{\partial x}\ln B$



Saliency boosted points

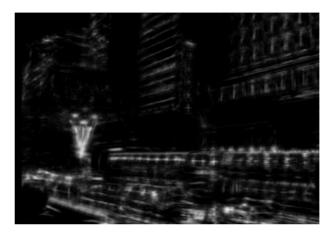




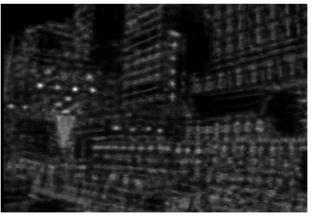
RGB-based (first 20 points)

saliency boosting (first 4 points)

Saliency boosted points



RGB-based



saliency boosting

Research - Approach

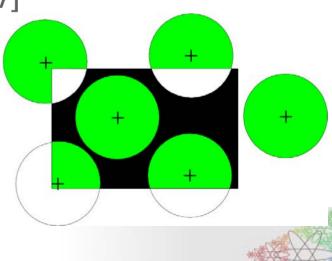
- Use different corner detectors in the framework
 - Intensity: Harris, SUSAN
 - Color: 2 colorHarris variants (colOppHarris, colRatHarris)
- Evaluation
 - Repeatability under common transformations (invariance)
 - Test sets for different common variations in imaging conditions
 - Blur, Lighting, Rotation/Scaling, viewing angle, JPEG compression
 - Information content of the detected regions (distinctiveness)
 - Detect lots of regions, estimate entropy from them.
 - Complexity

Intensity-based corner detectors

- Harris corner detector
 - Second moment matrix (SMM) at certain scale
 - Eigenvalues of SMM represent principal curvatures
 - Detect regions with high gradient in different directions

 $C_H(\mu) = \det(\mu) - \alpha \operatorname{trace}^2(\mu)$

- Discrete low-level corner detector [Smith 97]
 - Fundamentally different from Harris detector
 - Circular mask
 - Determine the area of the mask with a similar value as the center
 - Derive cornerness measure from it

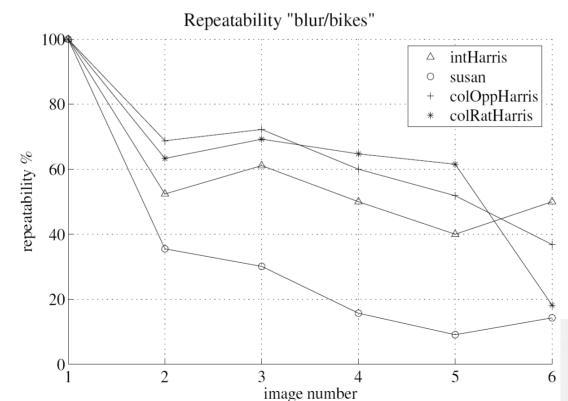


- Repeatability
 - For each common transformation a number of test sets
 - Each test sets contains 6 images
 - Gradual increase of transformation between images
 - Related by homography to establish a ground truth
 - Detected regions are projected onto the first image of set
 - Next: 4 test sets and repeatability results
 - Impression of overall performance

Experimental results - Repeatability/blur

. . .

. . .

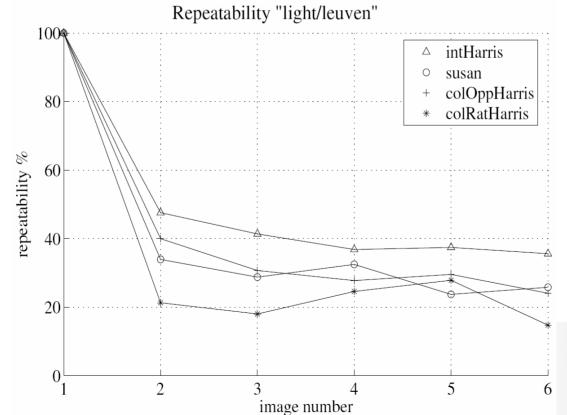


Experimental results - Repeatability/light

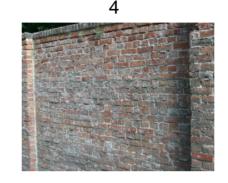
. . .

...

6

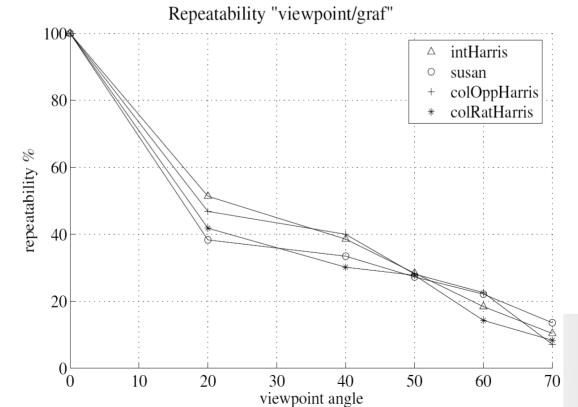


Experimental results - Repeatability/viewpoint

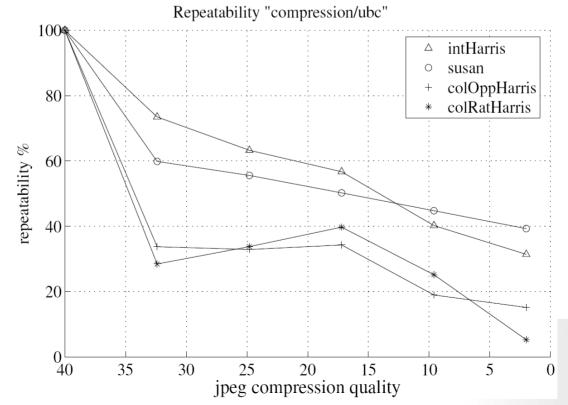


. . .

6



Experimental results - Repeatability/JPEG



6

Experimental results - Information content

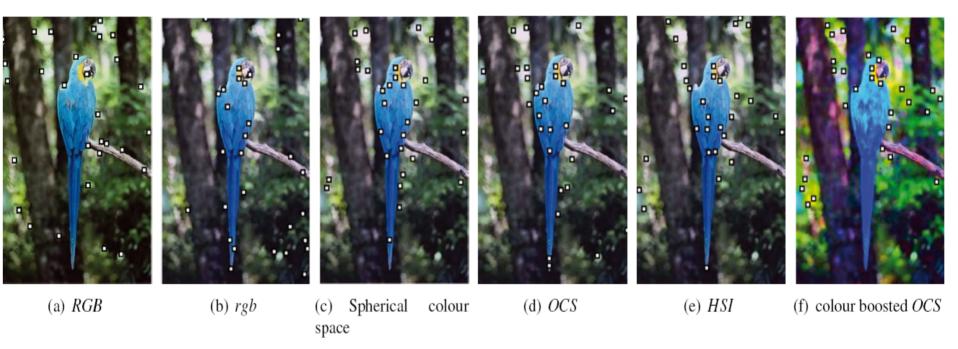
- Distinctiveness of the regions detected
 - Create descriptors and estimate entropy

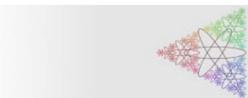
Detector	Entropy	
intensity Harris	11.41	
SUSAN	11.23	
colOppHarris	13.41	
colRatHarris	13.96	
random	9.24	

 Probability to produce a collision when matching is 7.4 times higher for intensity than for color.

Experimental results - Complexity

- Detection complexity
 - Intensity Harris and SUSAN approximately equal
 - colorHarris using *n* color channels
 - *n* times more expensive compared to intensity only
- Matching complexity
 - colorHarris tends to need less regions to perform optimal
 - Lower matching complexity

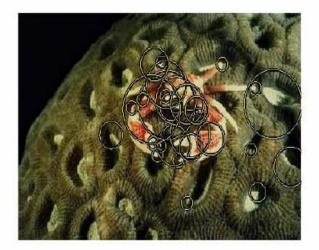




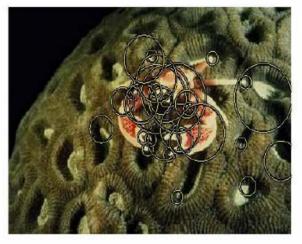
(a) Illumination

(b) HSI

Figure 3: 30 extracted regions based on luminance and HSI information with t = 1.2; s = 10; $\sigma_I = 0.7$. The regions shift towards colour differences, specular, and shading changes are not regarded anymore. The parrot is therefore highly prioritized.



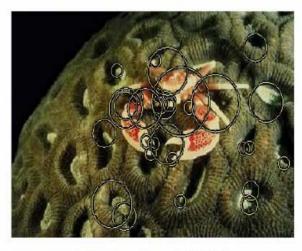
(a) Illumination



(b) *RGB*

(c) rgb

(d) *OCS*



(e) colour boosted OCS

(f) Quasi invariant HSI

What's Next? Using Context Information

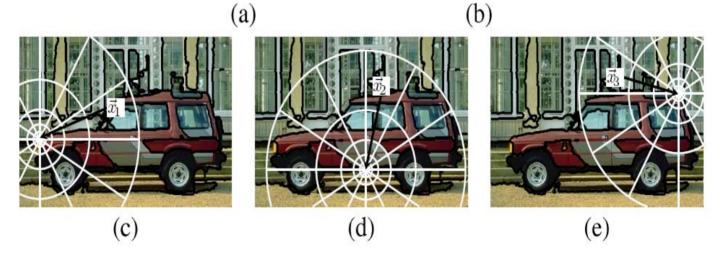


Fig. 1. (a) Dense cloud of points at contours of the image (in black). (b) Sampled set of points taken as reference (in white). (c)-(e) Log-polar spatial quantization of our descriptor given three different references \vec{x}_1 , \vec{x}_2 , \vec{x}_3 . The image representation is a set of descriptors, one for each reference point \vec{x}_i

What's Next? Using Context Information

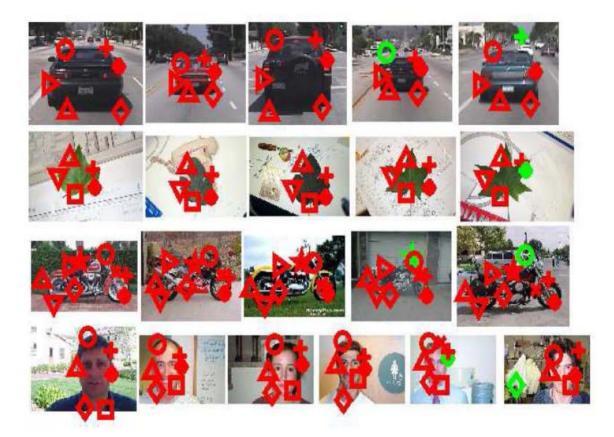


Fig. 5. Matching model parts across images. Different parts are shown with different symbols, where we sampled a few matchings for clarity.

Publications

- Context-based object class recognition and retrieval by generalized correlograms
 - J. Amores, P. Radeva, N. Sebe, IEEE Trans. PAMI (to appear)
- Color interest points for image retrieval
 - J. Stottinger, N. Sebe, A. Hanbury, T. Gevers, Computer Vision Winter Workshop, Feb 2007
- Do color interest points help image retrieval?

- J. Stottinger, N. Sebe, A. Hanbury, T. Gevers, submitted to ICIP

Object retrieval and recognition with color interest points

- J. Stottinger, N. Sebe, A. Hanbury, T. Gevers, submitted to ICCV